Post Reply 
Lambert W Function (hp-42s)
09-28-2020, 04:06 PM
Post: #21
RE: Lambert W Function (hp-42s)
Oh, I was overlooked this thread.
The Lambert W function came out when I was writing a description of the Widlar current souce a few months ago,
but it is not found in ordinary scientific calculators or spreadsheet software.
So I wrote an e^W calculation program for 42S, and additionally in C.

http://www.finetune.co.jp/~lyuka/technot...w-42s.html

It's nice to be able to handle complex numbers easily with 42S,
but if you try to find e^W with Newton-Raphson method, it will fail very close to -1/e.
So, it is desirable that the approximation error of the initial value is asymptotic to 0 at -1/e.
For that reason, I chose the following formula as an approximate expression that gives the initial value.

y0 = 1 / e + sqrt ((2 / e) * (x + 1 / e)) + 0.3 * (x + 1 / e);

Thanks to sqrt in this equation, in 42S we can automatically get the complex y0 from x less than -1 / e.

Instead of the coefficient of 0.3 in the formula above,
it can be "e - sqrt2 - 1" which makes zero error at x = 0,
or "1 / 3" from Puiseux series, but 0.3 is quite good enough for this purpose.
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
Lambert W Function (hp-42s) - Juan14 - 05-16-2020, 04:07 PM
RE: Lambert W Function (hp-42s) - Werner - 05-17-2020, 07:56 AM
RE: Lambert W Function (hp-42s) - Werner - 05-17-2020, 08:15 AM
RE: Lambert W Function (hp-42s) - Gerald H - 05-17-2020, 09:29 AM
RE: Lambert W Function (hp-42s) - Werner - 05-18-2020, 08:04 AM
RE: Lambert W Function (hp-42s) - Juan14 - 05-17-2020, 12:12 PM
RE: Lambert W Function (hp-42s) - Juan14 - 05-18-2020, 10:51 PM
RE: Lambert W Function (hp-42s) - Juan14 - 05-21-2020, 12:09 AM
RE: Lambert W Function (hp-42s) - Werner - 05-22-2020, 11:39 AM
RE: Lambert W Function (hp-42s) - Werner - 05-23-2020, 04:20 AM
RE: Lambert W Function (hp-42s) - Werner - 06-11-2020, 05:17 AM
RE: Lambert W Function (hp-42s) - Werner - 06-11-2020, 09:20 AM
RE: Lambert W Function (hp-42s) - lyuka - 09-28-2020 04:06 PM
RE: Lambert W Function (hp-42s) - Werner - 09-30-2020, 09:12 AM
RE: Lambert W Function (hp-42s) - Werner - 10-02-2020, 03:02 PM
RE: Lambert W Function (hp-42s) - Werner - 09-30-2020, 07:08 AM
RE: Lambert W Function (hp-42s) - lyuka - 09-29-2020, 09:21 AM
RE: Lambert W Function (hp-42s) - lyuka - 09-29-2020, 11:17 PM
RE: Lambert W Function (hp-42s) - lyuka - 09-30-2020, 11:04 AM
RE: Lambert W Function (hp-42s) - lyuka - 09-30-2020, 07:16 PM
RE: Lambert W Function (hp-42s) - Werner - 10-01-2020, 09:37 AM
RE: Lambert W Function (hp-42s) - Werner - 10-01-2020, 01:39 PM
RE: Lambert W Function (hp-42s) - lyuka - 10-01-2020, 06:25 PM
RE: Lambert W Function (hp-42s) - lyuka - 10-02-2020, 05:44 AM
RE: Lambert W Function (hp-42s) - lyuka - 10-03-2020, 07:56 PM
RE: Lambert W Function (hp-42s) - Werner - 10-05-2020, 08:03 AM
RE: Lambert W Function (hp-42s) - lyuka - 10-05-2020, 06:09 PM
RE: Lambert W Function (hp-42s) - Werner - 10-06-2020, 06:16 AM
RE: Lambert W Function (hp-42s) - lyuka - 11-09-2020, 08:30 AM



User(s) browsing this thread: 1 Guest(s)