(71B) Euler-Taylor method for the HP-71B
12-16-2019, 11:23 PM
Post: #14
 Namir Senior Member Posts: 823 Joined: Dec 2013
RE: (71B) Euler-Taylor method for the HP-71B
Thanks Albert for providing approximations for the seocnd and third derivative to extend the original Euler method.

If Albert ever attends an HHC conference then I am buying him dinner on Friday night (the eve of the start of the conference) OR Sunday night (where the HHC attendees go out for dinner). I am good for my word!

Here is an update of my original listing to take into account Chan's suggestions.

Code:
10 REM EULER-TAYLOR WITH 3 DERIVATIVES 20 DEF FNX(X,Y)=X*Y 30 FNE(X) = EXP(0.5*X^2) 40 READ A, B, Y, H 50 DATA 0, 1, 1, 0.01 60 N=INT((X1-X)/H+.5) 70 X=A 80 FOR I=1 TO N 90 D1=FNX(X,Y) 100 X=X+H @ Y=Y+H*D1 110 D2=H/2*(FNX(X,Y)-D1) @ Y=Y+D2 120 IF I>1 THEN Y=Y+(D2-D3)/3 130 D3=D2 140 NEXT I 150 Y1=FNE(B) 160 DISP "Y =";Y 170 DISP "Y EXACT=";Y1 180 DISP "%ERR =";100*(Y-Y1)/Y1 190 END
 « Next Oldest | Next Newest »

 Messages In This Thread (71B) Euler-Taylor method for the HP-71B - Namir - 12-07-2019, 04:36 PM RE: (71B) Euler-Taylor method for the HP-71B - Csaba Tizedes - 12-10-2019, 06:02 PM RE: (71B) Euler-Taylor method for the HP-71B - Namir - 12-11-2019, 10:07 PM RE: (71B) Euler-Taylor method for the HP-71B - Albert Chan - 12-13-2019, 02:12 PM RE: (71B) Euler-Taylor method for the HP-71B - Namir - 12-13-2019, 04:10 PM RE: (71B) Euler-Taylor method for the HP-71B - Albert Chan - 12-13-2019, 04:43 PM RE: (71B) Euler-Taylor method for the HP-71B - Csaba Tizedes - 12-14-2019, 08:44 AM RE: (71B) Euler-Taylor method for the HP-71B - Namir - 12-15-2019, 12:23 AM RE: (71B) Euler-Taylor method for the HP-71B - Csaba Tizedes - 12-15-2019, 08:25 AM RE: (71B) Euler-Taylor method for the HP-71B - Albert Chan - 12-15-2019, 08:14 PM RE: (71B) Euler-Taylor method for the HP-71B - Namir - 12-13-2019, 04:07 PM RE: (71B) Euler-Taylor method for the HP-71B - Namir - 12-13-2019, 09:16 PM RE: (71B) Euler-Taylor method for the HP-71B - Namir - 12-14-2019, 03:33 AM RE: (71B) Euler-Taylor method for the HP-71B - Namir - 12-16-2019 11:23 PM

User(s) browsing this thread: 1 Guest(s)