Post Reply 
(HP-67) Barkers's Equation
12-07-2019, 09:39 PM (This post was last modified: 03-21-2021 04:09 PM by Albert Chan.)
Post: #3
RE: (HP-67) Barkers's Equation
(12-06-2019 06:39 PM)Albert Chan Wrote:  y = ³√(W + sign(W) √(W²+1)) = ³√(cot(acot(W)/2))

Prove: let θ = acot(W), c = cot(θ/2)

Half angle formula: cot(θ) = W = (c²-1) / (2c)

c² - 2W c - 1 = 0   → c = W ± √(W²+1)

Since |θ| < pi/2, c has same sign of θ, which has same sign of W (assumed sign(0)=1)
However, 2 roots of c have opposite sign. Matching c and W signs, we have:

c = cot(acot(W)/2) = W + sign(W) √(W²+1)
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
(HP-67) Barkers's Equation - SlideRule - 12-06-2019, 01:27 PM
RE: (HP-67) Barkers's Equation - Albert Chan - 12-07-2019 09:39 PM



User(s) browsing this thread: 1 Guest(s)