(HP65) Factorial and Gamma Function
10-25-2017, 04:06 PM
Post: #9
 peacecalc Member Posts: 138 Joined: Dec 2013
RE: (HP65) Factorial and Gamma Function
Hello Dieter, hello Gamo,

thank you for your answers. Twenty-five years ago I wrote a "turbo-pascal" program for the gamma-fct with real arguments. I remember this, I also used for large arguments the stirling approx (x>10) as a example for coprozesser programming. But for smaller arguments I used the method described above (divsion by integer values). For negative number I used the formula:

$\Gamma(x) =\frac{\pi}{\sin(\pi x)\cdot\Gamma(1-x)}$ f. e.:

$\Gamma(-3.6) =\frac{\pi}{\sin(\pi (-3.6))\cdot\Gamma(4.6)}$.
 « Next Oldest | Next Newest »

 Messages In This Thread (HP65) Factorial and Gamma Function - Gamo - 10-21-2017, 08:32 AM RE: (HP65) Factorial and Gamma Function - Dieter - 10-21-2017, 01:21 PM RE: (HP65) Factorial and Gamma Function - Dieter - 10-21-2017, 08:01 PM RE: (HP65) Factorial and Gamma Function - Gamo - 10-22-2017, 02:40 AM RE: (HP65) Factorial and Gamma Function - Dieter - 10-22-2017, 05:28 PM RE: (HP65) Factorial and Gamma Function - peacecalc - 10-22-2017, 08:49 AM RE: (HP65) Factorial and Gamma Function - Dieter - 10-24-2017, 06:34 PM RE: (HP65) Factorial and Gamma Function - Gamo - 10-25-2017, 12:26 AM RE: (HP65) Factorial and Gamma Function - peacecalc - 10-25-2017 04:06 PM RE: (HP65) Factorial and Gamma Function - Dieter - 10-26-2017, 06:59 AM RE: (HP65) Factorial and Gamma Function - Massimo Gnerucci - 10-26-2017, 07:11 AM RE: (HP65) Factorial and Gamma Function - Dieter - 10-26-2017, 05:34 PM RE: (HP65) Factorial and Gamma Function - Massimo Gnerucci - 10-26-2017, 08:11 PM RE: (HP65) Factorial and Gamma Function - peacecalc - 10-26-2017, 03:41 PM RE: (HP65) Factorial and Gamma Function - pier4r - 10-27-2017, 08:06 AM RE: (HP65) Factorial and Gamma Function - toml_12953 - 10-27-2017, 02:26 PM RE: (HP65) Factorial and Gamma Function - Gamo - 10-27-2017, 01:57 PM

User(s) browsing this thread: 1 Guest(s)