Post Reply 
desolve y'=(x+y)^2
05-11-2015, 09:30 PM
Post: #31
RE: desolve y'=(x+y)^2
also with resolve(y'=-y^2,t,y) in the Prime I get [], while in the last XCas the correct answer is 1/(t+c_0)
I hope they release soon a new firmware almost with the new XCas improvements :-)

Salvo

∫aL√0mic (IT9CLU), HP Prime 50g 41CX 71b 42s 12C 15C - DM42 WP34s :: Prime Soft. Lib
Visit this user's website Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
desolve y'=(x+y)^2 - salvomic - 05-01-2015, 02:45 PM
RE: desolve y'=(x+y)^2 - Tugdual - 05-01-2015, 04:11 PM
RE: desolve y'=(x+y)^2 - salvomic - 05-01-2015, 04:14 PM
RE: desolve y'=(x+y)^2 - Arno K - 05-01-2015, 04:41 PM
RE: desolve y'=(x+y)^2 - salvomic - 05-01-2015, 04:48 PM
RE: desolve y'=(x+y)^2 - Tugdual - 05-01-2015, 07:06 PM
RE: desolve y'=(x+y)^2 - salvomic - 05-01-2015, 07:16 PM
RE: desolve y'=(x+y)^2 - lrdheat - 05-01-2015, 07:56 PM
RE: desolve y'=(x+y)^2 - lrdheat - 05-01-2015, 07:57 PM
RE: desolve y'=(x+y)^2 - salvomic - 05-01-2015, 08:06 PM
RE: desolve y'=(x+y)^2 - Tugdual - 05-01-2015, 08:26 PM
RE: desolve y'=(x+y)^2 - salvomic - 05-01-2015, 08:34 PM
RE: desolve y'=(x+y)^2 - parisse - 05-02-2015, 05:30 AM
RE: desolve y'=(x+y)^2 - salvomic - 05-02-2015, 07:00 AM
RE: desolve y'=(x+y)^2 - salvomic - 05-02-2015, 09:34 PM
RE: desolve y'=(x+y)^2 - parisse - 05-02-2015, 10:50 AM
RE: desolve y'=(x+y)^2 - salvomic - 05-02-2015, 12:36 PM
RE: desolve y'=(x+y)^2 - parisse - 05-02-2015, 12:43 PM
RE: desolve y'=(x+y)^2 - salvomic - 05-02-2015, 12:49 PM
RE: desolve y'=(x+y)^2 - parisse - 05-02-2015, 06:15 PM
RE: desolve y'=(x+y)^2 - salvomic - 05-02-2015, 07:32 PM
RE: desolve y'=(x+y)^2 - salvomic - 05-02-2015, 04:07 PM
RE: desolve y'=(x+y)^2 - Tugdual - 05-02-2015, 04:45 PM
RE: desolve y'=(x+y)^2 - salvomic - 05-02-2015, 04:59 PM
RE: desolve y'=(x+y)^2 - Tugdual - 05-02-2015, 05:21 PM
RE: desolve y'=(x+y)^2 - salvomic - 05-02-2015, 05:23 PM
RE: desolve y'=(x+y)^2 - parisse - 05-03-2015, 06:08 AM
RE: desolve y'=(x+y)^2 - salvomic - 05-03-2015, 07:48 AM
RE: desolve y'=(x+y)^2 - parisse - 05-04-2015, 07:15 AM
RE: desolve y'=(x+y)^2 - salvomic - 05-04-2015, 08:34 AM
RE: desolve y'=(x+y)^2 - salvomic - 05-11-2015 09:30 PM



User(s) browsing this thread: 1 Guest(s)