desolve y'=(x+y)^2
05-11-2015, 09:30 PM
Post: #31
 salvomic Senior Member Posts: 1,394 Joined: Jan 2015
RE: desolve y'=(x+y)^2
also with resolve(y'=-y^2,t,y) in the Prime I get [], while in the last XCas the correct answer is 1/(t+c_0)
I hope they release soon a new firmware almost with the new XCas improvements :-)

Salvo

∫aL√0mic (IT9CLU) :: HP Prime 50g 41CX 71b 42s 39s 35s 12C 15C - DM42, DM41X - WP34s Prime Soft. Lib
 « Next Oldest | Next Newest »

 Messages In This Thread desolve y'=(x+y)^2 - salvomic - 05-01-2015, 02:45 PM RE: desolve y'=(x+y)^2 - Tugdual - 05-01-2015, 04:11 PM RE: desolve y'=(x+y)^2 - salvomic - 05-01-2015, 04:14 PM RE: desolve y'=(x+y)^2 - Arno K - 05-01-2015, 04:41 PM RE: desolve y'=(x+y)^2 - salvomic - 05-01-2015, 04:48 PM RE: desolve y'=(x+y)^2 - Tugdual - 05-01-2015, 07:06 PM RE: desolve y'=(x+y)^2 - salvomic - 05-01-2015, 07:16 PM RE: desolve y'=(x+y)^2 - lrdheat - 05-01-2015, 07:56 PM RE: desolve y'=(x+y)^2 - lrdheat - 05-01-2015, 07:57 PM RE: desolve y'=(x+y)^2 - salvomic - 05-01-2015, 08:06 PM RE: desolve y'=(x+y)^2 - Tugdual - 05-01-2015, 08:26 PM RE: desolve y'=(x+y)^2 - salvomic - 05-01-2015, 08:34 PM RE: desolve y'=(x+y)^2 - parisse - 05-02-2015, 05:30 AM RE: desolve y'=(x+y)^2 - salvomic - 05-02-2015, 07:00 AM RE: desolve y'=(x+y)^2 - salvomic - 05-02-2015, 09:34 PM RE: desolve y'=(x+y)^2 - parisse - 05-02-2015, 10:50 AM RE: desolve y'=(x+y)^2 - salvomic - 05-02-2015, 12:36 PM RE: desolve y'=(x+y)^2 - parisse - 05-02-2015, 12:43 PM RE: desolve y'=(x+y)^2 - salvomic - 05-02-2015, 12:49 PM RE: desolve y'=(x+y)^2 - parisse - 05-02-2015, 06:15 PM RE: desolve y'=(x+y)^2 - salvomic - 05-02-2015, 07:32 PM RE: desolve y'=(x+y)^2 - salvomic - 05-02-2015, 04:07 PM RE: desolve y'=(x+y)^2 - Tugdual - 05-02-2015, 04:45 PM RE: desolve y'=(x+y)^2 - salvomic - 05-02-2015, 04:59 PM RE: desolve y'=(x+y)^2 - Tugdual - 05-02-2015, 05:21 PM RE: desolve y'=(x+y)^2 - salvomic - 05-02-2015, 05:23 PM RE: desolve y'=(x+y)^2 - parisse - 05-03-2015, 06:08 AM RE: desolve y'=(x+y)^2 - salvomic - 05-03-2015, 07:48 AM RE: desolve y'=(x+y)^2 - parisse - 05-04-2015, 07:15 AM RE: desolve y'=(x+y)^2 - salvomic - 05-04-2015, 08:34 AM RE: desolve y'=(x+y)^2 - salvomic - 05-11-2015 09:30 PM

User(s) browsing this thread: 1 Guest(s)