Post Reply 
[VA] SRC #010 - Pi Day 2022 Special
03-17-2022, 02:54 PM (This post was last modified: 03-17-2022 03:24 PM by Albert Chan.)
Post: #10
RE: [VA] SRC #010 - Pi Day 2022 Special
(03-16-2022 08:49 PM)Albert Chan Wrote:  \(\displaystyle \ln(\pi) = \int_0^{1/2} \left(
\frac{1}{y} + \frac{\pi (2y-1)}{\tan(\pi y)}
\right) dy\)

Wolfram Alpha proved this, with closed-form anti-derivative !

Code:
def G(y):
    k = pi*j
    z = exp(2*k*y)
    return ln(y) - ln(sin(pi*y)) + y*(2*log1p(-z)-k*y) + polylog(2,z)/k

>>> from mpmath import *
>>> limit(G,1/2) - limit(G,0)
mpc(real='1.1447298858494002', imag='0.0')
>>> exp(_)
mpc(real='3.1415926535897931', imag='0.0')

OP product form, which integral was derived from, is thus proved.
[Image: SRC10CSAJVKEBF3U9FD.jpg]
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
RE: [VA] SRC #010 - Pi Day 2022 Special - Albert Chan - 03-17-2022 02:54 PM



User(s) browsing this thread: 1 Guest(s)