(12C) Bhaskara's Sine and Cosine Approximations
07-30-2022, 10:51 AM
Post: #4
 Thomas Klemm Senior Member Posts: 2,119 Joined: Dec 2013
RE: (12C) Bhaskara's Sine and Cosine Approximations
(07-29-2022 05:13 PM)Albert Chan Wrote:  We don't have estimate formula for asin(x), because sin(x) were defined from estimated cos(x)
In other words, OP sin estimate formula is not needed; it is same as cos(90° - x°)

Code:
01-     43 33 07 g GTO 07 02-     36         ENTER 03-     09         9 04-     00         0 05-     34         x≷y 06-     30         − 07-     06         6 08-     00         0 09-     10         ÷ 10-     36         ENTER 11-     20         × 12-     09         9 13-     34         x≷y 14-     40         + 15-     09         9 16-     43 36    g LSTx 17-     04         4 18-     20         × 19-     30         − 20-     34         x≷y 21-     10         ÷ 22-     43 33 00 g GTO 00

However the jump table is now switched:

GTO 01 for $$\cos(x)$$
GTO 02 for $$\sin(x)$$

Quote:cos(45°) ≈ cos(1/4 ht) = (1-4/16) / (1+1/16) = 12/17 ≈ 0.7059

IIRC I used 9 and 60 instead of 1 and 180 to save one precious step.
 « Next Oldest | Next Newest »

 Messages In This Thread (12C) Bhaskara's Sine and Cosine Approximations - Thomas Klemm - 02-26-2022, 06:22 PM RE: (12C) Bhaskara's Sine and Cosine Approximations - Thomas Klemm - 07-29-2022, 12:13 PM RE: (12C) Bhaskara's Sine and Cosine Approximations - Albert Chan - 07-29-2022, 05:13 PM RE: (12C) Bhaskara's Sine and Cosine Approximations - Thomas Klemm - 07-30-2022 10:51 AM

User(s) browsing this thread: 1 Guest(s)