Calculators and numerical differentiation

11012020, 05:39 AM
Post: #4




RE: Calculators and numerical differentiation
Instead of averaging the backwards and forwards differences, why not just check to see if f(a) exists and if it does then do the central difference method?
Notice in the TI manual that the default epsilon can be overridden. Same goes the their 8x numeric models. The nonCAS Nspire apparently has a bit of CAS hidden under the hood because it does not use this approximation. It appears to evaluate the derivative symbolically and then evaluates that expression numerically, keeping the CAS carefully hidden from the user. (Had anyone previously seen the del operator used for the backwards difference as shown in the Casio manual?) 

« Next Oldest  Next Newest »

Messages In This Thread 
Calculators and numerical differentiation  robve  10302020, 09:57 PM
RE: Calculators and numerical differentiation  Paul Dale  10302020, 11:41 PM
RE: Calculators and numerical differentiation  Albert Chan  10312020, 01:20 AM
RE: Calculators and numerical differentiation  Wes Loewer  11012020 05:39 AM
RE: Calculators and numerical differentiation  Albert Chan  11012020, 05:39 PM
RE: Calculators and numerical differentiation  Albert Chan  11012020, 11:43 PM
RE: Calculators and numerical differentiation  Wes Loewer  11032020, 06:09 PM
RE: Calculators and numerical differentiation  Albert Chan  11032020, 10:14 PM
RE: Calculators and numerical differentiation  Wes Loewer  11042020, 04:14 PM
RE: Calculators and numerical differentiation  CMarangon  11032020, 06:55 PM
RE: Calculators and numerical differentiation  Wes Loewer  11042020, 04:04 PM

User(s) browsing this thread: 1 Guest(s)