Calculators and numerical differentiation
|
11-01-2020, 05:39 AM
Post: #4
|
|||
|
|||
RE: Calculators and numerical differentiation
Instead of averaging the backwards and forwards differences, why not just check to see if f(a) exists and if it does then do the central difference method?
Notice in the TI manual that the default epsilon can be overridden. Same goes the their 8x numeric models. The non-CAS Nspire apparently has a bit of CAS hidden under the hood because it does not use this approximation. It appears to evaluate the derivative symbolically and then evaluates that expression numerically, keeping the CAS carefully hidden from the user. (Had anyone previously seen the del operator used for the backwards difference as shown in the Casio manual?) |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
Calculators and numerical differentiation - robve - 10-30-2020, 09:57 PM
RE: Calculators and numerical differentiation - Paul Dale - 10-30-2020, 11:41 PM
RE: Calculators and numerical differentiation - Albert Chan - 10-31-2020, 01:20 AM
RE: Calculators and numerical differentiation - Wes Loewer - 11-01-2020 05:39 AM
RE: Calculators and numerical differentiation - Albert Chan - 11-01-2020, 05:39 PM
RE: Calculators and numerical differentiation - Albert Chan - 11-01-2020, 11:43 PM
RE: Calculators and numerical differentiation - Wes Loewer - 11-03-2020, 06:09 PM
RE: Calculators and numerical differentiation - Albert Chan - 11-03-2020, 10:14 PM
RE: Calculators and numerical differentiation - Wes Loewer - 11-04-2020, 04:14 PM
RE: Calculators and numerical differentiation - CMarangon - 11-03-2020, 06:55 PM
RE: Calculators and numerical differentiation - Wes Loewer - 11-04-2020, 04:04 PM
|
User(s) browsing this thread: 1 Guest(s)