HP50g simplifing a root
|
09-30-2020, 02:22 AM
(This post was last modified: 09-30-2020 02:42 AM by Albert Chan.)
Post: #3
|
|||
|
|||
RE: HP50g simplifing a root
For general case, to solve for all a, b:
³√(n + m√k) = a + b√k (a + b√k)³ = a³ + 3a²b√k + 3ab²k + b³k√k n = a³ + 3ab²k → n/a - a² = 3b²k m = 3a²b + b³k → 3m/b - 9a² = 3b²k Equate the 2 to eliminate k, we have b = 3ma / (n + 8a³) Substitute b to n = ... equation, we have a cubic equation, as function of A = a³ XCas> f(n, m, k) := horner([64, -48*n, 27*k*m^2-15*n^2, -n^3], A) For first example, ³√(26 - 15√3): XCas> expand(f(26,-15,3)) → 64*A^3 - 1248*A^2 + 8085*A - 17576 XCas> proot(ans()) → [5.75-1.125*i , 5.75+1.125*i , 8.0] Above solved for A = a³. Each A produce 3 roots of a, thus a totaled 3×3 = 9 roots. For this example, the real root is integer, a=2. XCas> b := 3*m*a/(n + 8*a^3) XCas> subst([a, b], [n,m,a] = [26,-15,2]) → [2, -1] |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 1 Guest(s)