(15C) Pythagorean Triples
03-23-2017, 03:34 AM
Post: #1
 Eddie W. Shore Senior Member Posts: 1,046 Joined: Dec 2013
(15C) Pythagorean Triples
This program calculates the Pythagorean triple (A, B, C) such that A^2 + B^2 = C^2 by the formulas:

A = K * (M^2 – N^2)
B = K * (2 * M * N)
C = K * (M^2 + N^2)

The conditions are M, N, and K are all positive integers where M > N.
Store M into memory 0, N into memory 1, and K into memory 2. A, B, and C are stored in memories 3, 4, and 5, respectively. If no such combination can be found, a single zero (0) is returned.

Code:
 Step    Key    Code 001    LBL A    42, 21, 11 002    RCL 1    45, 1 003    RCL 0    45, 0 004    X≤0    43, 10 005    GTO 0    22, 0 006    RCL 0    45, 0 007    X^2    43, 11 008    RCL 1    45, 1 009    X^2    43, 11 010    -    30 011    STO 3    44, 3 012    LST X    43, 36 013    2    2 014    *    20 015    +    40 016    STO 5    44, 5 017    RCL 0    45, 0 018    RCL* 1    45, 20, 1 019    2    2 020    *    20 021    STO 4    44, 4 022    RCL 2    45, 2 023    STO* 3    44, 20, 3 024    STO* 4    44, 20, 4 025    STO* 5    44, 20, 5 026    RCL 3    45, 3 027    X^2    43, 11 028    RCL 4    45, 4 029    X^2    43, 11 030    +    40 031    RCL 5    45, 5 032    X^2    43, 11 033    -    30 034    X=0    43, 20 035    GTO 1    22, 1 036    LBL 0    42, 22, 1 037    0    0 038    RTN    43, 32 039    LBL 1    42, 21, 1 040    RCL 3    45, 3 041    R/S    31 042    RCL 4    45, 4 043    R/S    31 044    RCL 5    45, 5 045    RTN    43, 32

Example: Input: R0 = M = 4, R1 = N = 1, R2 = 2. Output: 30, 16, 34
 « Next Oldest | Next Newest »

User(s) browsing this thread: 1 Guest(s)