Error in integration (10637)

11212016, 08:43 PM
Post: #1




Error in integration (10637)  
11212016, 09:33 PM
Post: #2




RE: Error in integration (10637)
My Prime (also 10637) returns 2 values, one exact and one approximate, and a warning that says that the Prime cannot verify that they are the same.
The exact is (1/3) [Gamma(1/3,216)Gamma(1/3)] and the approximate is 5.96393809188E91, There is no documentation entry for the Gamma(x,y) function that I can find. 

11212016, 09:40 PM
Post: #3




RE: Error in integration (10637)
Hi,
In Home view, Slavek is right... Marcel 

11212016, 09:52 PM
Post: #4




RE: Error in integration (10637)
Well, if, in HOME, I type what it shows in slawek image, my prime returns Syntax error. It seems that I need to prepend CAS to the integral. That is why I thought slawek was in CAS.


11212016, 09:56 PM
Post: #5




RE: Error in integration (10637)
Hi,
I have input the same integral and I have the same bizarre output! Marcel 

11222016, 01:30 AM
Post: #6




RE: Error in integration (10637)
I want to add, Gamma(1/3,216) is the incomplete Gamma, but the Prime doesn't seem to know waht to do with it other that display it. On approx(Gamma(1/3,216)) it returns "undef".


11222016, 06:49 AM
Post: #7




RE: Error in integration (10637)
You get two results from CAS: the exact one and the result of a numeric evaluation. Unfortunately, the exact one can not be evaled numerically because the argument of the incomplete gamma function is too large, therefore the CAS can not compare the two values that's why you get the warning.


11222016, 05:33 PM
Post: #8




RE: Error in integration (10637)
With version 8151 I have in HOME view the same approximate value as in CAS, and no exact value in CAS.
In HOME view I entered uppercase X, in CAS lowercase x. 

11302016, 04:18 PM
Post: #9




RE: Error in integration (10637)
I noticed that XCAS formats the answer to this integral in a slightly different way. Maybe the Prime could do that also? And for future upgrades, could it be possible to document that Incomplete Gamma? (Thanks)


« Next Oldest  Next Newest »

User(s) browsing this thread: 1 Guest(s)