Post Reply 
Dismal Arithmetic & 3 Progs for 49G & Others
05-11-2015, 04:16 PM
Post: #21
RE: Dismal Arithmetic & 2 Progs for 49G, the Prime, 48S & 32S & TI & C...
Now for something in BASIC: the Casio fx-702p "programmable calculator" (really more of a pocket computer). This is the slowest one yet, at 1:44 to do 435,821 * 2,949,229, but it DOES yield the full-precision result, 244,585,835,821, unlike the Casio graphing calculator. It displays 2.445858358E11, but you can pry the other digits out by executing F-2.445E11.

Just run it, tell it if you want to "A"dd, or "M"ultiply, then enter your two inputs.

Code:
1 INP "(A)DD (M)ULT:",$
2 $=MID(1,1)
10 IF $="A":INP "X",A,"Y",B:GSB 300:PRT S
20 IF $="M";INP "X",X,"Y",Y:GSB 400:PRT F
30 END

100 IF N=0;L=0:RET
110 L=INT LOG N+1:RET

200 R=FRAC (INT (N/10^(D-1))/10)*10:RET

300 N=A:GSB 100:C=L
310 N=B:GSB 100:IF L>C;C=L
320 S=0
330 FOR I=1 TO C
340 N=A:D=I:GSB 200:T=R
350 N=B:GSB 200:IF R>T;T=R
360 S=S+T*10^(I-1)
370 NEXT I
380 RET

400 N=X:GSB 100:Z=L
410 N=Y:GSB 100:J=L
420 F=0
430 FOR J=J TO 1 STEP -1
440 N=Y:D=J:GSB 200:M=R
450 P=0
460 FOR K=1 TO Z
470 U=M
480 N=X:D=K:GSB 200
490 IF R<U;U=R
500 P=P+U*10^(K-1)
510 NEXT K
520 A=P:B=10*F:GSB 300:F=S
530 NEXT J
540 PRT F

Routines
1 Interactive Menu
100 Number Length
200 Get Digit
300 Add
400 Multiply

Variables
N - Number Length input
L - Number Length result

N - Get Digit input
D - Get Digit digit number
R - Get Digit result

A - Addend 1
B - Addend 2
C - Add loop limit (addend max length)
I - Add loop counter
S - Sum
T - Addition scratch register

X - Factor 1
Y - Factor 2
Z - Factor 1 length
J - Factor 2 length/outer loop counter
K - Inner loop counter (factor 1)
P - Product
F - Sum of products
M - Factor 2 current digit
U - Multiply scratch register (digit comparison)

Notes: I think this is one of Casio's first BASIC machines, so it's got a few odd limitations.

A number of keywords are abbreviated from what's typically used (PRT, INP, GSB, RET, etc).

Variable naming and availability are limited much like the Sharp pocket computers. Single-character names, and some basic array functionality. Variables can hold numbers or strings (e.g. A vs. A$), but are limited to 7-character strings. The dedicated string variable, named simply $, can hold 30 characters.

There are two forms of the IF statement. This will do a GOTO if true:
IF X>3 THEN 90
And this will skip the rest of the line if false:
IF X>3;F=7:GSB 300
Note that you have to terminate the IF with a semicolon, whereas you use a colon to separate the rest of the statements.

The IF statement can't evaluate any compound expressions; there's no AND or OR functions! But you can string conditions together into a simple AND chain like this:
IF X>3;IF J<10;GSB 500:RET
Anything more complicated, and you're going to be doing GOTO stunts.

There's no DATA or READ statements. Not an issue here, but it was an annoying discovery when I was porting the usual prime factors program.

It's sloooow. It took almost 5 times as long as running the same algorithm on the Casio fx-8500g.

Despite all that, I like it, largely because it has slots for 10 independent programs, like most Casios do. The Sharp and TI offerings typically only provide a single program space.
Visit this user's website Find all posts by this user
Quote this message in a reply
05-11-2015, 06:04 PM
Post: #22
RE: Dismal Arithmetic & 2 Progs for 49G, the Prime, 48S & 32S & TI & C...
For additional info about pocket computer BASIC dialects I recommend looking at my BASIC Comparison Sheet.

Marcus von Cube
Wehrheim, Germany
http://www.mvcsys.de
http://wp34s.sf.net
http://mvcsys.de/doc/basic-compare.html
Find all posts by this user
Quote this message in a reply
05-13-2015, 09:19 AM
Post: #23
RE: Dismal Arithmetic & 3 Progs for 49G & Others
Given DPLUS & DMULT prompts the question: What does DPOW do?

As repeated addition of n to n produces n, this possibility is discarded as being too dull even for dismals.

Conservatively, repeated multiplication looks like a promising candidate. Here again, single digit powering is of little interest, as eg

5 d^ 300000001 = 5

but for integers > 9 the results become interesting - hopefully not so interesting
that the operation is not regarded as dismal.

So here's a provisional programme using the provisional definition of Dpowering - I name the programme DPOW.

Enter positive integer n to power to positive integer power p, eg

123
4

produces

111122223.

DPOW

::
CK2&Dispatch
# FFFF
::
FPTR2 ^DupQIsZero?
case2drop
Z1_
FPTR2 ^DupZIsOne?
caseDROP
OVER
PTR 2F3A3
%2
%<
caseDROP
OVERUNROT
FPTR2 ^Z>ZH
FPTR2 ^ZBits
#1-
ZERO_DO
SWAPDUP
ID DMULT
SWAP
ISTOP-INDEX
#1-
FPTR2 ^ZBit?
IT
::
SWAP3PICK
ID DMULT
SWAP
;
LOOP
DROPSWAPDROP
;
;

Alternative definitions of Dpowering welcome, programmes too.
Find all posts by this user
Quote this message in a reply
05-13-2015, 05:59 PM
Post: #24
RE: Dismal Arithmetic & 3 Progs for 49G & Others
Damn it, Gerald, you're just trying to get me to rewrite all those goofy ports I did. ;D

Actually, this would be pretty simple to add to any of the existing programs. You just need to store another loop counter, a copy of the original base, and depending on the language, a running total, then just stick in an outer loop that calls the multiply routine repeatedly.

Part of me says, yeah, that's a sensible definition of powering, since it maintains x^2 = x*x, but for these operations, x+x != 2*x. So I guess it could reasonably go either way, really.
Visit this user's website Find all posts by this user
Quote this message in a reply
05-13-2015, 06:37 PM
Post: #25
RE: Dismal Arithmetic & 3 Progs for 49G & Others
With my definition & my programme 123 d^ 30 takes 11.6 sec on the 50G, so simply multiplying n times will take a truly dismally long time.
Find all posts by this user
Quote this message in a reply
05-13-2015, 07:26 PM
Post: #26
RE: Dismal Arithmetic & 3 Progs for 49G & Others
(05-13-2015 06:37 PM)Gerald H Wrote:  With my definition & my programme 123 d^ 30 takes 11.6 sec on the 50G, so simply multiplying n times will take a truly dismally long time.

True. We're probably looking at something like O(n log n) complexity for this. Good reason not to try it on my TI-66.
Visit this user's website Find all posts by this user
Quote this message in a reply
10-28-2015, 02:17 PM
Post: #27
RE: Dismal Arithmetic & 3 Progs for 49G & Others
Two programmes for the HP 35S, a translation of Dave Britten's 32S programmes above.

Given stack levels X & Y integers, programme A returns dismal sum & programme M returns dismal product.

Code:

Addition
1    LBL A
2    STO B
3    XEQ A038
4    x<>y
5    STO A
6    XEQ A038
7    x<y?
8    x<>y
9    3
10    10^x
11    /
12    1
13    +
14    STO D
15    0
16    STO C
17    RCL A
18    RCL D
19    IP
20    XEQ A046
21    RCL B
22    RCL D
23    IP
24    XEQ A046
25    x<y?
26    x<>y
27    RCL D
28    IP
29    1
30    -
31    10^x
32    *
33    STO+ C
34    ISG D
35    GTO A017
36    RCL C
37    RTN
38    x=0?
39    RTN
40    ABS
41    LOG
42    1
43    +
44    IP
45    RTN
46    1
47    -
48    10^x
49    /
50    IP
51    10
52    /
53    FP
54    10
55    *
56    RTN

Multiplication
1    LBL M
2    STO H
3    XEQ A038
4    STO J
5    x<>y
6    STO G
7    XEQ A038
8    3
9    10^x
10    /
11    STO K
12    0
13    STO I
14    0
15    STO L
16    RCL H
17    RCL J
18    IP
19    XEQ A046
20    STO M
21    RCL K
22    FP
23    1
24    +
25    STO K
26    RCL M
27    RCL G
28    RCL K
29    IP
30    XEQ A046
31    x>y?
32    x<>y
33    RCL K
34    IP
35    1
36    -
37    10^x
38    *
39    STO+ L
40    ISG K
41    GTO M026
42    10
43    RCL* I
44    RCL L
45    XEQ A001
46    STO I
47    DSE J
48    GTO M014
49    RCL I
50    RTN
Find all posts by this user
Quote this message in a reply
10-30-2015, 10:43 AM
Post: #28
RE: Dismal Arithmetic & 3 Progs for 49G & Others
Here a copy of Dave Britten's programmes for the HP 42S.

DIS+ performs dismal addition, DIS* dismal multiplication.

Code:

0.    { 174-Byte Prgm }
1.    LBL “DIS+”
2.    STO 02
3.    XEQ 00
4.    X<>Y
5.    STO 01
6.    XEQ 00
7.    X<Y?
8.    X<>Y
9.    1E3
10.    /
11.    1
12.    +
13.    STO 04
14.    0
15.    STO 03
16.    LBL 01
17.    RCL 01
18.    RCL 04
19.    IP
20.    XEQ 02
21.    RCL 02
22.    RCL 04
23.    IP
24.    XEQ 02
25.    X<Y?
26.    X<>Y
27.    RCL 04
28.    IP
29.    1
30.    -
31.    10^X
32.    *
33.    STO+ 03
34.    ISG 04
35.    GTO 01
36.    RCL 03
37.    RTN
38.    LBL 00
39.    X=0?
40.    RTN
41.    ABS
42.    LOG
43.    1
44.    +
45.    IP
46.    RTN
47.    LBL 02
48.    1
49.    -
50.    10^X
51.    /
52.    IP
53.    10
54.    /
55.    FP
56.    10
57.    *
58.    RTN
59.    LBL "DIS*"
60.    STO 06
61.    XEQ 00
62.    STO 08
63.    X<>Y
64.    STO 05
65.    XEQ 00
66.    1E3
67.    /
68.    STO 09
69.    0
70.    STO 07
71.    LBL 04
72.    0
73.    STO 10
74.    RCL 06
75.    RCL 08
76.    IP
77.    XEQ 02
78.    STO 11
79.    RCL 09
80.    FP
81.    1
82.    +
83.    STO 09
84.    LBL 03
85.    RCL 11
86.    RCL 05
87.    RCL 09
88.    IP
89.    XEQ 02
90.    X>Y?
91.    X<>Y
92.    RCL 09
93.    IP
94.    1
95.    -
96.    10^X
97.    *
98.    STO+ 10
99.    ISG 09
100.    GTO 03
101.    10
102.    RCL* 07
103.    RCL 10
104.    XEQ "DIS+"
105.    STO 07
106.    DSE 08
107.    GTO 04
108.    RCL 07
109.    END
Find all posts by this user
Quote this message in a reply
Post Reply 




User(s) browsing this thread: 1 Guest(s)