Adapting 'Accurate' TVM routine on HP-15C (and HP-34C) using MISO Technique
01-11-2014, 05:53 AM (This post was last modified: 01-11-2014 04:09 PM by Thomas Klemm.)
Post: #21
 Thomas Klemm Senior Member Posts: 1,447 Joined: Dec 2013
RE: Adapting 'Accurate' TVM routine on HP-15C using MISO Technique
(01-10-2014 10:50 PM)Jeff_Kearns Wrote:  There must be some subtle stack lift thing going on that recall arithmetic avoids in the subsequent substitutions.

The problem is in these two lines:

021 ENTER
022 RCL * 3

If you just replace RCL * 3 with RCL 3, * then this will overwrite the value in register x since ENTER disabled the stack lift. Thus what we really need here is DUP. There are two possibilities you can circumvent this problem:

ENTER
ENTER
RCL 3
*

Or:

ENTER
X<>Y
RCL 3
*

But this is the only occurrence of this problem. In all the other situations RCL ? n can be replaced by just RCL n, ?.
In these situations a stack diagram is helpful.

001 LBL E       $$x$$      $$x$$      $$x$$      $$x$$
002 STO (i)     $$x$$      $$x$$      $$x$$      $$x$$
003 RCL 2       $$x$$      $$x$$      $$x$$      $$i\%$$
004 EEX         $$x$$      $$x$$      $$i\%$$      $$1$$
005 2           $$x$$      $$x$$      $$i\%$$      $$100$$
006 /           $$x$$      $$x$$      $$x$$      $$i$$
007 ENTER       $$x$$      $$x$$      $$i$$      $$i$$
008 ENTER       $$x$$      $$i$$      $$i$$      $$i$$
009 1           $$x$$      $$i$$      $$i$$      $$1$$
010 +           $$x$$      $$x$$      $$i$$      $$1+i$$
011 LN          $$x$$      $$x$$      $$i$$      $$\ln(1+i)$$
012 X<>Y        $$x$$      $$x$$      $$\ln(1+i)$$      $$i$$
013 LSTx        $$x$$      $$\ln(1+i)$$      $$i$$      $$1+i$$
014 1           $$\ln(1+i)$$      $$i$$      $$1+i$$      $$1$$
015 X≠Y         $$\ln(1+i)$$      $$i$$      $$1+i$$      $$1$$
016 -           $$\ln(1+i)$$      $$\ln(1+i)$$      $$i$$      $$i$$
017 /           $$\ln(1+i)$$      $$\ln(1+i)$$      $$\ln(1+i)$$      $$1$$
018 *           $$\ln(1+i)$$      $$\ln(1+i)$$      $$\ln(1+i)$$      $$\ln(1+i)$$
019 RCL 1       $$\ln(1+i)$$      $$\ln(1+i)$$      $$\ln(1+i)$$      $$n$$
020 *           $$\ln(1+i)$$      $$\ln(1+i)$$      $$\ln(1+i)$$      $$n\ln(1+i)$$
021 e^x         $$\ln(1+i)$$      $$\ln(1+i)$$      $$\ln(1+i)$$      $$(1+i)^n$$
022 RCL 3       $$\ln(1+i)$$      $$\ln(1+i)$$      $$(1+i)^n$$      $$B$$
023 X<>Y        $$\ln(1+i)$$      $$\ln(1+i)$$      $$B$$      $$(1+i)^n$$
024 *           $$\ln(1+i)$$      $$\ln(1+i)$$      $$\ln(1+i)$$      $$B(1+i)^n$$
025 LSTx        $$\ln(1+i)$$      $$\ln(1+i)$$      $$B(1+i)^n$$      $$(1+i)^n$$
026 1           $$\ln(1+i)$$      $$B(1+i)^n$$      $$(1+i)^n$$      $$1$$
027 -           $$\ln(1+i)$$      $$\ln(1+i)$$      $$B(1+i)^n$$      $$(1+i)^n-1$$
028 RCL 4       $$\ln(1+i)$$      $$B(1+i)^n$$      $$(1+i)^n-1$$      $$P$$
029 *           $$\ln(1+i)$$      $$\ln(1+i)$$      $$B(1+i)^n$$      $$P((1+i)^n-1$$)
030 EEX         $$\ln(1+i)$$      $$B(1+i)^n$$      $$P((1+i)^n-1)$$      $$1$$
031 2           $$\ln(1+i)$$      $$B(1+i)^n$$      $$P((1+i)^n-1)$$      $$100$$
032 RCL 2       $$B(1+i)^n$$      $$P((1+i)^n-1)$$      $$100$$      $$i\%$$
033 /           $$B(1+i)^n$$      $$B(1+i)^n$$      $$P((1+i)^n-1)$$      $$\frac{1}{i}$$
034 RCL 6       $$B(1+i)^n$$      $$P((1+i)^n-1)$$      $$\frac{1}{i}$$      $$E$$
035 +           $$B(1+i)^n$$      $$B(1+i)^n$$      $$P((1+i)^n-1)$$      $$\frac{1}{i}+E$$
036 *           $$B(1+i)^n$$      $$B(1+i)^n$$      $$B(1+i)^n$$      $$P((1+i)^n-1)(\frac{1}{i}+E)$$
037 +           $$B(1+i)^n$$      $$B(1+i)^n$$      $$B(1+i)^n$$      $$B(1+i)^n+P((1+i)^n-1)(\frac{1}{i}+E)$$
038 RCL 5       $$B(1+i)^n$$      $$B(1+i)^n$$      $$B(1+i)^n+P((1+i)^n-1)(\frac{1}{i}+E)$$      $$F$$
039 +           $$B(1+i)^n$$      $$B(1+i)^n$$      $$B(1+i)^n$$      $$B(1+i)^n+P((1+i)^n-1)(\frac{1}{i}+E)+F$$
040 RTN         $$B(1+i)^n$$      $$B(1+i)^n$$      $$B(1+i)^n$$      $$B(1+i)^n+P((1+i)^n-1)(\frac{1}{i}+E)+F$$

Yes, I've tested it and it works fine. The blinking is amazing!

Cheers
Thomas

01-11-2014, 03:48 PM
Post: #22
 Dieter Senior Member Posts: 2,397 Joined: Dec 2013
RE: Adapting 'Accurate' TVM routine on HP-15C using MISO Technique
(01-11-2014 05:53 AM)Thomas Klemm Wrote:  ENTER
ENTER
RCL 3
*

Or:
ENTER
X<>Y
RCL 3
*

This is even one step shorter:
...
RCL 3
X<>Y
*
LastX
...

Dieter
01-11-2014, 04:11 PM
Post: #23
 Thomas Klemm Senior Member Posts: 1,447 Joined: Dec 2013
RE: Adapting 'Accurate' TVM routine on HP-15C using MISO Technique
(01-11-2014 03:48 PM)Dieter Wrote:  This is even one step shorter:
RCL 3
X<>Y
*
LastX
Nice catch! Updated my listing.

Cheers
Thomas
01-11-2014, 04:26 PM (This post was last modified: 01-11-2014 04:27 PM by Jeff_Kearns.)
Post: #24 Jeff_Kearns Member Posts: 147 Joined: Dec 2013
RE: Adapting 'Accurate' TVM routine on HP-15C using MISO Technique
(01-11-2014 04:11 PM)Thomas Klemm Wrote:  Nice catch! Updated my listing.

Cheers
Thomas

And I mine - in the software section!
Jeff
01-11-2014, 06:25 PM
Post: #25
 Dieter Senior Member Posts: 2,397 Joined: Dec 2013
RE: Adapting 'Accurate' TVM routine on HP-15C using MISO Technique
(01-11-2014 04:11 PM)Thomas Klemm Wrote:  Nice catch! Updated my listing.

Now let's see if we can do something with the %-function instead of dividing x by 100. ;-)

Dieter
 « Next Oldest | Next Newest »

User(s) browsing this thread: 1 Guest(s)