Equation with log LN

03242020, 07:47 PM
Post: #1




Equation with log LN  
03252020, 07:30 PM
Post: #2




RE: Equation with log LN
Does it have complex numbers for solutions? Try cSolve.


03252020, 08:15 PM
Post: #3




RE: Equation with log LN
The cSolve command does not solve the problem. There is probably some problem in CAS. The author of CAS, can speak as an authority.
I await his opinion. 

03252020, 09:45 PM
(This post was last modified: 03252020 09:46 PM by jfdHP.)
Post: #4




RE: Equation with log LN
In fact, the calculator is right, there are only two real solutions, as can be shown by plotting the function. Why do you believe there are four solutions?


03252020, 10:38 PM
Post: #5




RE: Equation with log LN  
03262020, 12:46 AM
Post: #6




RE: Equation with log LN
Remove the "Y=" from the equations in the Function Symbolic View. You will see that there is a discontinuity of LN(X^21) between 1 and 1. The resulting plot only shows two solutions.
Wolfram Alpha agrees: https://www.wolframalpha.com/input/?i=x%...x%5E21%29 Ceci n'est pas une signature. 

03262020, 06:53 AM
Post: #7




RE: Equation with log LN
I still think there are 4 solutions. The calculator only calculates two. I made a similar equation x ^ 2100 = LN (x). In this case, the calculator correctly solves the equation and gives 2 solutions. One solution x = 10.115 and x = 3.720E44. It also solves unevenness well (see calculator screenshots).
Solution x = 3.720E44 is a number almost equal to 0, but it is not zero. Similarly, in the equation x ^ 2100 = LN (x), one solution is the number x> 1 and the other is the number x <1. The calculator, however, does not calculate these values. He only gives x = 10.229 and x = 10.229. But let this issue be decided by authority, the author of CAS. 

03262020, 07:08 AM
Post: #8




RE: Equation with log LN
(03242020 07:47 PM)Jan 11 Wrote: I have another equation that I have a problem with. This is the following equation: x ^ 2100 = LN (x ^ 21). The equation has 4 solutions. The calculator gives only two solutions. Why. On the bottom two solve()'s, it looks like you are trying to zoom in on the other two solutions, but you altered the equation from \(x^2100=\ln(x^21)\) to \(x^2100=\ln(x^2)\). — Ian Abbott 

03262020, 07:29 AM
Post: #9




RE: Equation with log LN
The nSolve on TI Voyage 200 finds a solution at x=1.00000000001 with a "Questionable accuracy" warning.
— Ian Abbott 

03262020, 07:33 AM
Post: #10




RE: Equation with log LN
This is an attempt to solve this equation by other methods. But it was ineffective. Please do not pay attention to this. Today's post and screenshots are current.


03262020, 07:36 AM
(This post was last modified: 03262020 07:37 AM by ijabbott.)
Post: #11




RE: Equation with log LN
(03262020 07:33 AM)Jan 11 Wrote: This is an attempt to solve this equation by other methods. But it was ineffective. Please do not pay attention to this. Today's post and screenshots are current. Nevertheless, you are trying to find numerical solutions at the limits of the numerical precision of the calculator, very close to the discontinuities. — Ian Abbott 

03262020, 07:58 AM
Post: #12




RE: Equation with log LN
Ijabbott, thank you very much. I had the same thoughts as you. That's why I downloaded OS 2.09 from the network (for my VOYAGE 200). Screenshots with the solution attached. However, there are 4 solutions, not two.
SCREEN01.BMP (Size: 90.05 KB / Downloads: 11) SCREEN02.BMP (Size: 90.05 KB / Downloads: 7) SCREEN03.BMP (Size: 90.05 KB / Downloads: 6) 

03262020, 08:19 AM
Post: #13




RE: Equation with log LN
(03262020 07:58 AM)Jan 11 Wrote: Ijabbott, thank you very much. I had the same thoughts as you. That's why I downloaded OS 2.09 from the network (for my VOYAGE 200). Screenshots with the solution attached. However, there are 4 solutions, not two. I have a small fever. Have to inserted all these roots into the original equation in order to check them? 

03262020, 08:33 AM
Post: #14




RE: Equation with log LN
Yes, it's not possible to solve this equation numerically, because the singularity of the logarithm that will raise the crossing will not appear numerically. The solution near 1 (or 1) verifies x^2100 is almost 99, therefore ln(x^21) is almost 99, and x is about sqrt(1+exp(99)) i.e. about 1+exp(99)/2, the difference with 1 is 5e44. And with floats, 1+5e44==1.


03262020, 10:20 AM
Post: #15




RE: Equation with log LN
How can I solve the equation x^2100=log(x^21) in Xcas with Digits:=50?


03262020, 12:10 PM
Post: #16




RE: Equation with log LN
You don't need multiprecision floats, but you have to desingularize the equation if you want to improve the accuracy of 1+exp(99)/2. The next command will also work on the Prime:
f:=x^2100log(x^21); x:=1+h; h:=exp(99)/2*(1+k); [kk]:=fsolve(normal(f),k=0.1..0.1); Therefore x1 is approximatively exp(99)/2*(1+kk) kk being approx 4.7e13, in fact 1+exp(99)/2 is already a numeric approximation of x with 50 digits. 

03262020, 01:00 PM
(This post was last modified: 03262020 01:14 PM by rombva.)
Post: #17




RE: Equation with log LN
My question concerns exactly Xcas. When I change the Digits the number of digits after decimal point in the roots of some equation isn't changed. How can some equations with multiprecision floats be solved?
Does the Digits parametr refer only to the evalf command or does it influence the number of digits returned by the solve command? 

03262020, 02:21 PM
Post: #18




RE: Equation with log LN
(03262020 01:00 PM)rombva Wrote: My question concerns exactly Xcas. When I change the Digits the number of digits after decimal point in the roots of some equation isn't changed. How can some equations with multiprecision floats be solved? HP Prime Digits := 50 ; // or 1000 More χCas features? – – VPN PS: more sick, still flu, Ibuprofen gives ½ brains back 

03262020, 02:55 PM
Post: #19




RE: Equation with log LN
(03262020 01:00 PM)rombva Wrote: My question concerns exactly Xcas. When I change the Digits the number of digits after decimal point in the roots of some equation isn't changed. How can some equations with multiprecision floats be solved? There is indeed something preventing newton to work with multiprecision floats, it will be fixed in the next version of Xcas. 

03262020, 03:24 PM
Post: #20




RE: Equation with log LN
Another issue I found with rand().
Commandline evaluation with rand() command causes the unexpected close of the Xcas (x64 Win 10, win32 Xcas 1.5.037). Thanks! 

« Next Oldest  Next Newest »

User(s) browsing this thread: 1 Guest(s)