New [Set] menu

12172018, 03:13 AM
(This post was last modified: 12172018 04:43 PM by compsystems.)
Post: #1




New [Set] menu
Hello
The concept of set is almost the first thing taught in mathematics, for this reason, I think you should add a submenu in [TOOLS] [Math] [Set] with the following eight instructions, with symbols as tags 1:∪ 2: ∩ 3: \ 4: × 5: ∈ 6: ⊂ 7: Δ 8: ' 1: ∪ example set[ "b", "a", "c", "a" ] union set[ "a", "d" ] [↵] set["b","a","c","d"] 2: ∩ set[ "b", "a", "c", "a" ] intersect set[ "a", "d" ] [↵] set["a"] 3: \ (minus) set[ "b", "a", "c", "a" ] minus set[ "a", "d" ] [↵] set["b","c"] 4: × (cartesian product) set[ "b", "a", "c", "a" ] * set[ "a", "d" ] [↵] [["b","a"], ["b","d"], ["a","a"], ["a","d"], ["c","a"], ["c","d"]] 5: ∈ (is_element) evalb(is_element("a",set["b","a","c","a"])) [↵]true // For a more intuitive output the numeric value [>0]/0 should be symbolix true/false, in this way the use of the EVALB() command is avoided. 6: ⊂ (is_included) this function is not yet visible in the hpprime catalog =( evalb(is_included(set[ "a", "d" ], set[ "b", "a", "c", "a" ])) [↵] false 7: Δ (Symmetric difference ) M:= set[ "A", "B", "C"] N:= set[ "B", "G", "L", "E"] U:= set[ "A", "B", "C", "G", "L", "E", "I", "J", "F", "H"] M union N [↵] set["A","B","C","G","L","E"] M intersect N [↵] set["B"] M minus N [↵] set["A","C"] M Δ N [↵] set["G","L","E","A","C"] // Code: PHP Code: (N_ minus M_) union (M_ minus N_) 8: ' (Complement ) M' U [↵] set["G","L","E","I","J","F","H"] // Code: U_ minus M_ N' U [↵] set["A","C","I","J","F","H"] // Code: U_ minus N_ LO SUFICIENTEMENTE BUENO ES ENEMIGO DE LA EXCELENCIA. 

12182018, 12:48 PM
Post: #2




RE: New [Set] menu
This is awesome. Great suggestion compsystems!


12182018, 09:33 PM
Post: #3




RE: New [Set] menu
It would be interesting a separate application for this task, I think it would be colorful
Viga C  TD  FB 

12192018, 02:16 AM
Post: #4




RE: New [Set] menu
I notice that in the LIST menu, it has three set commands, but the list type is not always equal to a set
test index:=1:; E_ := [ "H", "E", "L", "L", "O" ]:; find( "L", E_ ) [enter] [3,4] // "L" is in two positions index(E_,"L") [enter] 3 F_ := set[ "H", "E", "L", "L", "O" ] [enter] set[ "H", "E", "L", "O" ] find( "L", F_ ) [enter] [3] // "L" is in one positions index(F_,"L") [enter] 3 E_ == F_ [enter] false also diference cmd does not work on a set DIFFERENCE(set["b","a","c","a"],set["a","d"]) [enter] {"b","c","d"} set[ "b", "a", "c", "a" ] minus set[ "a", "d" ] [↵] set["b","c"] LO SUFICIENTEMENTE BUENO ES ENEMIGO DE LA EXCELENCIA. 

« Next Oldest  Next Newest »

User(s) browsing this thread: 1 Guest(s)