Gamma function, SinhIntegral, CoshIntegral
|
11-07-2022, 02:31 PM
Post: #5
|
|||
|
|||
RE: Gamma function, SinhIntegral, CoshIntegral
(11-06-2022 06:27 PM)robmio Wrote: HP PRIME --> Gamma (4/5, -6) --> 294.845140024 Mathematica Gamma, converted to HP Prime Gamma Note: it is not Abs[Gamma[4/5,-6]] ≈ 294.624 Gamma[4/5] + Abs[Gamma[4/5] - Gamma[4/5,-6]] = Gamma[4/5] + (Gamma[4/5] - Gamma[4/5,-6]) / (-1)^(4/5) = 294.845140024 ... HP Prime Gamma, back to Mathematica Gamma: CAS> gamma(a,x) := when(x<0, [Gamma(a),Gamma(a,x)] * [1+(-1)^a,-(-1)^a], Gamma(a,x)) CAS> gamma(4/5,-6.) → 238.757077078-172.62130796*i Quote:I hadn't really noticed: why does HP PRIME return the absolute value? It is just a guess, but some integral result is more elegant. CAS> int(e^x^3) → 1/3*(Gamma(1/3,-x^3) - Gamma(1/3)) CAS> Ans(x=6.) → 5.96393809188e91 Mathematica: ∫(e^x^3) = -(x Γ(1/3, -x^3))/(3 (-x^3)^(1/3)) ∫(e^x^3, x=0..6) ≈ (5.964E91 + 0.7733*i) - (-0.4465 + 0.7733*i) ≈ 5.964E91 |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
Gamma function, SinhIntegral, CoshIntegral - robmio - 11-06-2022, 06:27 PM
RE: Gamma function, SinhIntegral, CoshIntegral - lrdheat - 11-06-2022, 07:03 PM
RE: Gamma function, SinhIntegral, CoshIntegral - robmio - 11-06-2022, 07:24 PM
RE: Gamma function, SinhIntegral, CoshIntegral - lrdheat - 11-06-2022, 08:45 PM
RE: Gamma function, SinhIntegral, CoshIntegral - Albert Chan - 11-07-2022 02:31 PM
RE: Gamma function, SinhIntegral, CoshIntegral - robmio - 11-07-2022, 03:34 PM
RE: Gamma function, SinhIntegral, CoshIntegral - robmio - 11-08-2022, 11:49 AM
|
User(s) browsing this thread: 1 Guest(s)