Bürgi's Kunstweg to Calculate Sines
|
05-08-2022, 01:19 PM
Post: #2
|
|||
|
|||
RE: Bürgi's Kunstweg to Calculate Sines
Double Difference
We can use the addition formualas to simplify the double difference: \( \sin(\alpha \pm \beta) = \sin(\alpha) \cos(\beta) \pm \cos(\alpha) \sin(\beta) \) This leads to: \( \begin{align} \Delta^2 \sin(\alpha) &:= \left[\sin(\alpha + \beta) - \sin(\alpha)\right] - \left[\sin(\alpha) - \sin(\alpha - \beta)\right] \\ &= \sin(\alpha + \beta) - 2 \sin(\alpha) + \sin(\alpha - \beta) \\ &= \sin(\alpha) \cos(\beta) + \cos(\alpha) \sin(\beta) - 2 \sin(\alpha) + \sin(\alpha) \cos(\beta) - \cos(\alpha) \sin(\beta) \\ &= 2 \sin(\alpha) \left(\cos(\beta) - 1\right) \\ \end{align} \) We notice that it is proportional to \( \sin(\alpha) \) independent of \( \alpha \). In the limit of \( \beta \to 0 \) we get: \( \lim_{\beta \to 0} \frac{\cos(\beta) - 1}{\beta^2} = - \frac{1}{2} \) This leads to the 2nd derivative of the sine function: \( \sin(\alpha){''} = \lim_{\beta \to 0} \frac{\Delta^2 \sin(\alpha)}{\beta^2} = - \sin(\alpha) \) Conclusion If we apply the double difference on a sequence \( \{a_j\} \) where \( j \in \{1, \cdots, n\} \) and the values are sines of angles in arithmetic progression, we get a sequence that is proportional to the original. The proportional factor is: \( 2 \left(\cos(\beta) - 1\right) \) Here \( \beta \) is the difference between consecutive angles. However we have to consider two cases at the boundary. Lower bound: j = 1 In this case we have: \( \alpha = \beta \) This leads to: \( \begin{align} \sin(\alpha + \beta) - 2 \sin(\alpha) + \sin(\alpha - \beta) &= \sin(2 \alpha) - 2 \sin(\alpha) + \sin(0) \\ &= 2 \sin(\alpha) \cos(\alpha) - 2 \sin(\alpha) \\ &= 2 \sin(\alpha) \left(\cos(\alpha) - 1 \right) \\ &= 2 \sin(\alpha) \left(\cos(\beta) - 1 \right) \\ \end{align} \) We end up with the same result as before. Upper bound: j = n In this case we have: \( \alpha = 90^\circ \) Here we calculate only the single difference: \( \sin(\alpha) - \sin(\alpha - \beta) = 1 - \cos(\beta) \) We notice that apart from the factor \( -2 \) we get the same result since \( \sin(\alpha) = 1 \). Matrix Notation We can therefore describe the double difference operation with the matrix \( \Delta \): \( \Delta = \left[\begin{matrix} 2 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ -1 & 2 & -1 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & -1 & 2 & -1 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & -1 & 2 & -1 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & -1 & 2 & -1 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & 2 & -1\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -2 & 2 \end{matrix}\right] \) Bürgi seems to have noticed that the result was less precise than before. So he reversed the process. \( \Sigma = \Delta^{-1} = \left[\begin{matrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & \frac{1}{2}\\ 1 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 1\\ 1 & 2 & 3 & 3 & 3 & 3 & 3 & 3 & \frac{3}{2}\\ 1 & 2 & 3 & 4 & 4 & 4 & 4 & 4 & 2\\ 1 & 2 & 3 & 4 & 5 & 5 & 5 & 5 & \frac{5}{2}\\ 1 & 2 & 3 & 4 & 5 & 6 & 6 & 6 & 3\\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 7 & \frac{7}{2}\\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 4\\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & \frac{9}{2} \end{matrix}\right] \) Calculating the Sines We can simply copy and paste the following matrices into Free42: 1 1 1 1 1 1 1 1 0.5 1 2 2 2 2 2 2 2 1 1 2 3 3 3 3 3 3 1.5 1 2 3 4 4 4 4 4 2 1 2 3 4 5 5 5 5 2.5 1 2 3 4 5 6 6 6 3 1 2 3 4 5 6 7 7 3.5 1 2 3 4 5 6 7 8 4 1 2 3 4 5 6 7 8 4.5 ENTER ENTER ENTER 2 4 6 7 8 9 10 11 12 × 63 124 181 232 276 312 339 356 362 × 2064 4065 5942 7638 9102 10290 11166 11703 11884 × 67912 133760 195543 251384 299587 338688 367499 385144 391086 × 2235060 4402208 6435596 8273441 9859902 11146776 12094962 12675649 12871192 Note: What appeared to be simple turned out to be a problem. The separator in the matrix has to be a tabulator. But I couldn't figure out how to do that when you copy it from this page. It is always replaced by a blank. Thus my recommendation for now is to copy the matrix into a text-editor, replace the blanks by tabs and copy the result into Free42. References |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
Bürgi's Kunstweg to Calculate Sines - Thomas Klemm - 05-07-2022, 11:31 AM
RE: Bürgi's Kunstweg to Calculate Sines - Thomas Klemm - 05-08-2022 01:19 PM
RE: Bürgi's Kunstweg to Calculate Sines - Albert Chan - 05-09-2022, 01:48 AM
RE: Bürgi's Kunstweg to Calculate Sines - Albert Chan - 05-09-2022, 04:55 PM
|
User(s) browsing this thread: 1 Guest(s)