Funny math problem to calculate the Pin Number for a credit card.
|
08-11-2021, 03:40 PM
(This post was last modified: 08-12-2021 10:45 AM by Albert Chan.)
Post: #4
|
|||
|
|||
RE: Funny math problem to calculate the Pin Number for a credit card.
(08-10-2021 05:41 AM)Steve Simpkin Wrote: Here is the solution using a Casio fx-991EX. FYI, integrand singularity (at x=1) is removable. (3x^3-x^2+2x-4) / √(x^2-3x+2) = (x-1)*(3*x^2+2*x+4) / √((x-1)*(x-2)) = -(1-x)*(3*x^2+2*x+4) / √((1-x)*(2-x)) // integral limits 0 to 1, √(1-x), √(2-x) both real = -(3*x^2+2*x+4) * √(1-1/(2-x)) XCAS> -∫((3*x^2+2*x+4) * √(1-1/(2-x)), x=0..1) (-202*sqrt(2) + 135*ln(2*sqrt(2)+3))/16 // ≈ -2.98126694401 --- Proof: assume integral have the form f*√g (f*√g)' = f'*√g + f/(2√g)*g' = (f'*g + f*g'/2) / √g XCAS> f := a*x^2+b*x+c // integrand numerator is cubic, thus quadratic f XCAS> g := x^2 - 3x + 2 // integrand denominator = √g XCAS> coefs := e2r(f'*g + f*g'/2) [3*a, (-15*a+4*b)/2, (8*a-9*b+2*c)/2, (4*b-3*c)/2] Ignore constant term for now, we match 3 coefs with 3 unknown. XCAS> a, b, c := 1, 13/4, 101/8 XCAS> coefs [3, -1, 2, -199/16] // = [3, -1, 2, -4] - [0, 0, 0, 135/16] I1 = preval(f*√g, 0, 1) = subst(-f*√g, x=0) = -101/8*√(2) I2 = ∫(1/√(x^2-3x+2), x=0..1) // let y = 2*(x-3/2)=2x-3, dy = 2 dx = ∫(1/√(y^2-1), y=-3 .. -1) // ∫(1/√(y^2-1), y) = -ln(abs(-y+sqrt(y^2-1))) = ln(2*√(2)+3) I = I1 + 135/16 * I2 = -101/8*√(2) + 135/16*ln(2*√(2)+3) |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 1 Guest(s)