HP49-50G Lambert function
|
10-21-2020, 02:54 AM
Post: #11
|
|||
|
|||
RE: HP49-50G Lambert function
(10-20-2020 10:44 PM)Gil Wrote: But There are many solutions to w*exp(w) = -191 >>> y = eW(-191) 0 (-56.8217567265+11.8431109072j) 1 (-35.6200433622+23.0040034786j) 2 (-34.9016087888+23.7270165869j) 3 (-34.9018254893+23.7292860973j) 4 (-34.9018255003+23.729286094j) >>> log(y) (3.742525902068365+2.5444934919969335j) Besides speed, another benefit of solving for y = e^W: Recovering W = log(y), |W.imag| ≤ pi Quote:By the way, when solving for Assume x is real, and x > 0: 2 log(x) = x log(2) (1/x) log(1/x) = -log(2)/2 = a >>> a = -log(2)/2 >>> 1/eW(a) 0 (0.499474906605+0j) 1 (0.500000902271+0j) 2 (0.500000000003+0j) 3 (0.5+0j) 4 (0.5+0j) (2+0j) For W-1, we try guess from below. ![]() >>> 1/eW(a, y=0.2) 0 0.2 1 (0.240506189867-0j) 2 (0.24956480343-0j) 3 (0.24999902269-0j) 4 (0.249999999995-0j) (4.0000000000000018+0j) Now, for x < 0: 2 log(-x) = x log(2) (-1/x) log(-1/x) = log(2)/2 = -a >>> -1/eW(-a) 0 (1.30724304932+0j) 1 (1.30435370354+0j) 2 (1.3043511789+0j) 3 (1.3043511789+0j) 4 (1.3043511789+0j) (-0.76666469596212317+0j) |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
HP49-50G Lambert function - Gil - 10-17-2020, 08:42 PM
RE: HP49-50G Lambert function - Gil - 10-18-2020, 10:22 AM
RE: HP49-50G Lambert function W(z) - Gil - 10-19-2020, 09:06 AM
RE: HP49-50G Lambert function - Gil - 10-19-2020, 09:13 AM
RE: HP49-50G Lambert function - Albert Chan - 10-20-2020, 01:48 AM
RE: HP49-50G Lambert function - Gil - 10-19-2020, 09:40 AM
RE: HP49-50G Lambert function - Gil - 10-20-2020, 08:28 AM
RE: HP49-50G Lambert function - Gil - 10-20-2020, 08:42 AM
RE: HP49-50G Lambert function - Albert Chan - 10-20-2020, 04:40 PM
RE: HP49-50G Lambert function - Gil - 10-20-2020, 10:44 PM
RE: HP49-50G Lambert function - Albert Chan - 10-21-2020 02:54 AM
RE: HP49-50G Lambert function - Albert Chan - 10-21-2020, 12:13 PM
RE: HP49-50G Lambert function - Gil - 10-21-2020, 11:44 AM
|
User(s) browsing this thread: 1 Guest(s)