HP49-50G Lambert function
|
10-20-2020, 01:48 AM
(This post was last modified: 10-21-2020 01:12 AM by Albert Chan.)
Post: #6
|
|||
|
|||
RE: HP49-50G Lambert function
(10-19-2020 09:13 AM)Gil Wrote: The program gives almost instantaneous answer for non-complex solutions ; as expected, You can speed up convergence by solving y = e^W(x) instead. W e^W = y * log(y) = x f = y * log(y) - x, f' = log(y) + 1, then apply Newton's method. f' is insensitive to guess y, and will converge very fast, even with bad guess. Code: from cmath import * >>> eW(-1+2j) 0 (0.912470160638+1.60208654199j) 1 (0.985261305638+1.5911210409j) 2 (0.985506513217+1.59184289853j) 3 (0.98550646367+1.59184283455j) 4 (0.98550646367+1.59184283455j) (0.98550646366951244+1.5918428345475875j) >>> eW(-1e10+2e10j) 0 (-2999932566.3+6000109109.25j) 1 (-452114322.526+1139389284.48j) 2 (-387942931.588+998560851.502j) 3 (-387765196.033+998129458.041j) 4 (-387765194.562+998129453.635j) (-387765194.56226903+998129453.63483131j) https://www.hpmuseum.org/forum/thread-15...#pid136892 http://www.finetune.co.jp/~lyuka/technot...w-42s.html |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
HP49-50G Lambert function - Gil - 10-17-2020, 08:42 PM
RE: HP49-50G Lambert function - Gil - 10-18-2020, 10:22 AM
RE: HP49-50G Lambert function W(z) - Gil - 10-19-2020, 09:06 AM
RE: HP49-50G Lambert function - Gil - 10-19-2020, 09:13 AM
RE: HP49-50G Lambert function - Albert Chan - 10-20-2020 01:48 AM
RE: HP49-50G Lambert function - Gil - 10-19-2020, 09:40 AM
RE: HP49-50G Lambert function - Gil - 10-20-2020, 08:28 AM
RE: HP49-50G Lambert function - Gil - 10-20-2020, 08:42 AM
RE: HP49-50G Lambert function - Albert Chan - 10-20-2020, 04:40 PM
RE: HP49-50G Lambert function - Gil - 10-20-2020, 10:44 PM
RE: HP49-50G Lambert function - Albert Chan - 10-21-2020, 02:54 AM
RE: HP49-50G Lambert function - Albert Chan - 10-21-2020, 12:13 PM
RE: HP49-50G Lambert function - Gil - 10-21-2020, 11:44 AM
|
User(s) browsing this thread: 1 Guest(s)