HP49-50G Lambert function
|
10-19-2020, 09:06 AM
Post: #3
|
|||
|
|||
RE: HP49-50G Lambert function W(z)
Lamber function for HP49-50G
W.Z=>X Version 2. - That version allows now complex numbers Z as argument (and will give a complex number as answer. - Having the Z complex number, find the complex solution small z, such that (...z) × EXP (...z) = Z. - The program allows also, as argument, negative numbers < -1/e, in which case the answer will also be a complex number z. - For the other cases, when entering Y W(Z) ENTER, we get the searched real value x=W(Y). - The program gives almost instantaneous answer, but do no tamper on previously registered variable. - Here is the new program code: « "Lambert W(Z): Having result Y Y real in (-879.3 infinity) or Z complex (a,b) W(Z) finds / gives X such that (X * EXP X) = Z W(X * EXP X) =X " DROP =>Y « IF Y TYPE 1. == NOT THEN IF Y -1. EXP NEG < THEN Y 0. RC 'Y' STO END END IFERR 'X' 'X' RCL THEN ELSE END IF Y TYPE 1. == THEN DUP2 SAME NOT IF THEN 'X' PURGE END 'a*EXP(a)*COS(b)-b*EXP(a)*SIN(b)' Y OBJ DROP = 'a*EXP(a)*SIN(b)+b*EXP(a)*COS(b)' Y CR SWAP DROP = 2. ARRY 'a' 'b' 2. ARRY [ 1. 1. ] MSLV OBJ DROP RC UNROT DROP2 ELSE 'X*EXP(X)-Y' 'X' 1. ROOT END UNROT DUP2 SAME IF THEN DROP2 'X' PURGE ELSE SWAP STO END "W(" Y + ")" + =>TAG » » Example of use: What is the Lambert x value for y=(sqrt 2) /2? 1) 2 SQRT 2 / gives. 707 2) 2 SQRT 2 / W.Y=>X gives 0.4506 Application: Solve x^2*e^x=2 Take square root of the above expression: x*e^(x/2) = sqrt 2 Divide by 2: (x/2)*e^(x/2) = (sqrt 2) / 2 That has a form of: "(X..X)" * e ^"(X..X) " = (sqrt 2)/2 Then W ["(X..X)" * e ^"(X..X)"] = W [(sqrt 2)/2] Or "X.. X" = W [(sqrt 2)/2] In our case we have: W[(x/2)*e^(x/2)] = W[(sqrt 2) / 2] Or x/2 = W[(sqrt 2) / 2] Or x = 2 * W[(sqrt 2) / 2] = 2 * 0.4506 = 0.9012 Remarks welcome. Regards, Gil Campart |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
HP49-50G Lambert function - Gil - 10-17-2020, 08:42 PM
RE: HP49-50G Lambert function - Gil - 10-18-2020, 10:22 AM
RE: HP49-50G Lambert function W(z) - Gil - 10-19-2020 09:06 AM
RE: HP49-50G Lambert function - Gil - 10-19-2020, 09:13 AM
RE: HP49-50G Lambert function - Albert Chan - 10-20-2020, 01:48 AM
RE: HP49-50G Lambert function - Gil - 10-19-2020, 09:40 AM
RE: HP49-50G Lambert function - Gil - 10-20-2020, 08:28 AM
RE: HP49-50G Lambert function - Gil - 10-20-2020, 08:42 AM
RE: HP49-50G Lambert function - Albert Chan - 10-20-2020, 04:40 PM
RE: HP49-50G Lambert function - Gil - 10-20-2020, 10:44 PM
RE: HP49-50G Lambert function - Albert Chan - 10-21-2020, 02:54 AM
RE: HP49-50G Lambert function - Albert Chan - 10-21-2020, 12:13 PM
RE: HP49-50G Lambert function - Gil - 10-21-2020, 11:44 AM
|
User(s) browsing this thread: 1 Guest(s)