Post Reply 
Lambert W Function (hp-42s)
10-02-2020, 03:02 PM
Post: #38
RE: Lambert W Function (hp-42s)
(09-30-2020 05:28 PM)Albert Chan Wrote:  y ← y - (y*ln(y) - x) / (ln(y) + 1)

Or, equivalent version (simpler, but slightly less accurate): y ← (y + x) / (ln(y) + 1)

As y approach 1/e, slope (denominator) goes to zero.
With limited precision, as soon as y reached half precision, ln(y) + 1 will lose half precison too.

It's rather the y+x that is the culprit - or y*ln(y)-x, which is zero as you pointed out.
LN(y)+1 for y close to 1/e can be calculated precisely as (LN1P being the LN1+X function)
LN(y) + 1 = LN((1/e)*(1+e*(y-1/e)) + 1 = -1 + LN1P(e*(y-1/e)) + 1
= LN1P(e*(y-1/e))
eg. y = 1/e + 1e-17
then LN(y) + 1 = 2.71828182845904521e-17
LN1P(e*(y-1/e)) = 2.718281828459045198415006976699411e-17

But the cancellation happens also in y + x, and there's nothing we can do. Or at least, nothing *I* can do ;-)

Cheers, Werner

41CV†,42S,48GX,49G,DM42,DM41X,17BII,15CE,DM15L,12C,16CE
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
Lambert W Function (hp-42s) - Juan14 - 05-16-2020, 04:07 PM
RE: Lambert W Function (hp-42s) - Werner - 05-17-2020, 07:56 AM
RE: Lambert W Function (hp-42s) - Werner - 05-17-2020, 08:15 AM
RE: Lambert W Function (hp-42s) - Gerald H - 05-17-2020, 09:29 AM
RE: Lambert W Function (hp-42s) - Werner - 05-18-2020, 08:04 AM
RE: Lambert W Function (hp-42s) - Juan14 - 05-17-2020, 12:12 PM
RE: Lambert W Function (hp-42s) - Juan14 - 05-18-2020, 10:51 PM
RE: Lambert W Function (hp-42s) - Juan14 - 05-21-2020, 12:09 AM
RE: Lambert W Function (hp-42s) - Werner - 05-22-2020, 11:39 AM
RE: Lambert W Function (hp-42s) - Werner - 05-23-2020, 04:20 AM
RE: Lambert W Function (hp-42s) - Werner - 06-11-2020, 05:17 AM
RE: Lambert W Function (hp-42s) - Werner - 06-11-2020, 09:20 AM
RE: Lambert W Function (hp-42s) - lyuka - 09-28-2020, 04:06 PM
RE: Lambert W Function (hp-42s) - Werner - 09-30-2020, 09:12 AM
RE: Lambert W Function (hp-42s) - Werner - 10-02-2020 03:02 PM
RE: Lambert W Function (hp-42s) - Werner - 09-30-2020, 07:08 AM
RE: Lambert W Function (hp-42s) - lyuka - 09-29-2020, 09:21 AM
RE: Lambert W Function (hp-42s) - lyuka - 09-29-2020, 11:17 PM
RE: Lambert W Function (hp-42s) - lyuka - 09-30-2020, 11:04 AM
RE: Lambert W Function (hp-42s) - lyuka - 09-30-2020, 07:16 PM
RE: Lambert W Function (hp-42s) - Werner - 10-01-2020, 09:37 AM
RE: Lambert W Function (hp-42s) - Werner - 10-01-2020, 01:39 PM
RE: Lambert W Function (hp-42s) - lyuka - 10-01-2020, 06:25 PM
RE: Lambert W Function (hp-42s) - lyuka - 10-02-2020, 05:44 AM
RE: Lambert W Function (hp-42s) - lyuka - 10-03-2020, 07:56 PM
RE: Lambert W Function (hp-42s) - Werner - 10-05-2020, 08:03 AM
RE: Lambert W Function (hp-42s) - lyuka - 10-05-2020, 06:09 PM
RE: Lambert W Function (hp-42s) - Werner - 10-06-2020, 06:16 AM
RE: Lambert W Function (hp-42s) - lyuka - 11-09-2020, 08:30 AM



User(s) browsing this thread: 1 Guest(s)