(41C) Euler-Taylor method (updated)
12-15-2019, 01:33 AM (This post was last modified: 12-15-2019 01:35 AM by Namir.)
Post: #2
 Namir Senior Member Posts: 907 Joined: Dec 2013
RE: (41C) Euler-Taylor method
The next version of the Euler-Taylor program uses the approximation for the second derivative that Albert Chan came up with (click here). Thus we can eliminate LBL C and its code. The program interacts with the user like in the first version:

Code:
 01    LBL "EULTLR" 02     LBL A 03    "A/^B?" 04     PROMPT 05     STO 01 06    RDN 07    STO 00 08    "Y/^H?" 09    PROMPT 10    STO 02 11    RDN 12    StO 03 13     RCL 01 14    RCL 00 15    - 16    RCL 02 17    / 18    0.5 19     + 20    INT   21     0.001 22    + 23    STO 04  # calclate and store nsteps 24    LBL 00 25    XEQ B   # calculate f'(x,y) 26    STO 05 # Calculate D1=f'(x,y) 27    RCL 02 28    STO+ 00 # x = x +h 29    * 30    STO+ 03 # y = y + h*D1 31    XEQ B   # calculate f'(x,y) 32    RCL 05 33    - 34    RCL 02 35    * 36    2 37    / 38    STO+ 03 # y = y + h/2*(f'(x,y)-D1) 39    VIEW 03 40     DSE 04 41    GTO 00 42    CLD 43    RCL 01 44    XEQ E 45    RCL 03  # recall calculated y at x=b 46    RTN 47    LBL B  # calculate f'(x,y) = y * x 48    RCL 03 49    RCL 00 50    * 51    RTN 52    LBL E  # exact f(x,y) = g(x) = exp(0.5*x^2) 53    X^2 54    2 55    / 56    EXP 57    RTN
 « Next Oldest | Next Newest »

 Messages In This Thread (41C) Euler-Taylor method (updated) - Namir - 12-07-2019, 04:21 PM RE: (41C) Euler-Taylor method - Namir - 12-15-2019 01:33 AM RE: (41C) Euler-Taylor method - Namir - 12-18-2019, 08:12 PM

User(s) browsing this thread: 1 Guest(s)