(41C) Pythagorean Triples
|
07-03-2022, 08:18 AM
(This post was last modified: 07-03-2022 02:06 PM by C.Ret.)
Post: #7
|
|||
|
|||
RE: (41C) Pythagorean Triples
(07-01-2022 11:55 AM)John Keith Wrote: Additionally, Berggren's method does not require GCD and is pretty fast and simple on any calculator that can handle matrices. It generates all primitive triples but in a different order than the complex squaring method. Thanks for pointing out this method which easily produces tons of primary Pythagorean triples using a very simple recursive program on an advanced calculator natively manipulating vectors and matrices: PYT: « 1 + [[ 1 2 2 ][ 2 1 2 ][ 2 2 3]] → T n M \(T=\left[a_0,b_0,c_0 \right]\) « " " 1 n 2 * SUB T →STR + PR1 STR→ IF n N < THEN M T 2 DUP2 GET NEG PUT * n PYT \(\left[a_1,b_1,c_1\right]=\begin{bmatrix}1&-2&2\\2&-1&2\\2&-2&3\\\end{bmatrix}\times \left [ a_0,b_0,c_0 \right ]=\begin{bmatrix}1&2&2\\2&1&2\\2&2&3\\\end{bmatrix}\times \left [ a_0,-b_0,c_0 \right ]\) M T * n PYT \(\left[a_2,b_2,c_2\right]=\begin{bmatrix}1&2&2\\2&1&2\\2&2&3\\\end{bmatrix}\times \left [ a_0,b_0,c_0 \right ]\) M T 1 DUP2 GET NEG PUT * n PYT \(\left[a_3,b_3,c_3\right]=\begin{bmatrix}-1&2&2\\-2&1&2\\-2&2&3\\\end{bmatrix}\times \left [ a_0,b_0,c_0 \right ]=\begin{bmatrix}1&2&2\\2&1&2\\2&2&3\\\end{bmatrix}\times \left [ -a_0,b_0,c_0 \right ]\) END » » Store max depth into N register: 4 'N' STO Set printer online, aim to it and print by typing: [ 3 4 5 ] 0 PYT |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
(41C) Pythagorean Triples - SlideRule - 10-15-2019, 12:57 PM
RE: (41C) Pythagorean Triples - Thomas Klemm - 06-25-2022, 03:40 PM
RE: (41C) Pythagorean Triples - C.Ret - 06-26-2022, 09:29 AM
RE: (41C) Pythagorean Triples - Thomas Klemm - 06-27-2022, 05:51 AM
RE: (41C) Pythagorean Triples - Ángel Martin - 06-29-2022, 01:02 PM
RE: (41C) Pythagorean Triples - John Keith - 07-01-2022, 11:55 AM
RE: (41C) Pythagorean Triples - C.Ret - 07-03-2022 08:18 AM
RE: (41C) Pythagorean Triples - John Keith - 07-03-2022, 01:55 PM
RE: (41C) Pythagorean Triples - Thomas Klemm - 07-03-2022, 10:46 AM
RE: (41C) Pythagorean Triples - C.Ret - 07-03-2022, 01:41 PM
|
User(s) browsing this thread: 1 Guest(s)