(12C+) Bernoulli Number
|
07-27-2019, 06:41 AM
(This post was last modified: 07-28-2019 06:08 AM by Gamo.)
Post: #1
|
|||
|
|||
(12C+) Bernoulli Number
In need of the Bernoulli Number using HP-12C ?
Here is an attempt to generate a Bernoulli Number constant using 12C Without a Pi function this program use 355/113 which give out about 4 to 5 digits precision. ------------------------------------------------- To run: If you need to know B10 divide it by 2 is 5 5 [R/S] display 0.07576 [R/S] 5 [X<>Y] 66 Answer: B10 is 0.07576 or in fraction is 5/66 -------------------------------------------------- B12 12 ÷ 2 = 6 6 [R/S] display 0.25311 [R/S] 61 [X<>Y] 241 Answer: B12 since 12 is divisible by 4 answer is Negative -0.25311 in fraction is -61/241 -------------------------------------------------- Remark: To find B(n) divide it by 2 and calculate. This program do not give answer of the alternate negative value such as B2 = 1/6 where B4 = -1/30 For B(n) that divisible by 4 answer is "Negative" -------------------------------------------------- Program: Code:
Formula use to calculate Bernoulli Number B(n) = [2(2n)! ÷ ((2^2n) - 1)(Pi^2n)] [1 + (1/3^2n) + (1/5^2n) + ...] Gamo |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
(12C+) Bernoulli Number - Gamo - 07-27-2019 06:41 AM
RE: (12C+) Bernoulli Number - Albert Chan - 07-27-2019, 12:41 PM
RE: (12C+) Bernoulli Number - Gamo - 07-27-2019, 01:40 PM
RE: (12C+) Bernoulli Number - John Keith - 07-27-2019, 07:49 PM
RE: (12C+) Bernoulli Number - Albert Chan - 07-28-2019, 12:02 AM
RE: (12C+) Bernoulli Number - John Keith - 07-28-2019, 11:21 AM
RE: (12C+) Bernoulli Number - Albert Chan - 08-30-2023, 09:46 PM
RE: (12C+) Bernoulli Number - Albert Chan - 09-11-2023, 03:48 PM
RE: (12C+) Bernoulli Number - Albert Chan - 07-28-2019, 01:08 AM
RE: (12C+) Bernoulli Number - Gamo - 07-28-2019, 02:29 AM
RE: (12C+) Bernoulli Number - Albert Chan - 07-31-2019, 05:14 PM
RE: (12C+) Bernoulli Number - Albert Chan - 09-12-2023, 05:59 PM
|
User(s) browsing this thread: 2 Guest(s)