(12C Platinum) Cubic Equation
01-12-2019, 09:27 AM (This post was last modified: 01-12-2019 09:55 AM by Gamo.)
Post: #1
 Gamo Senior Member Posts: 722 Joined: Dec 2016
(12C Platinum) Cubic Equation
ALG mode program solution of a Cubic Equation by Newton's Method.

f(x) = aX^3 + bX^2 + cX + d = 0

Successive approximations to a root are found by

Xi+1 = 2aXi^3 + bXi^2 -d / 3aXi^2 + 2bXi + c

Guess X0

------------------------------------------------------

Remark:

This program is use to solve for "REAL ROOT"

-------------------------------------------------------
Procedure:

f PRGM // Each new program or GTO 000

a [R/S] b [R/S] c [R/S] d [R/S] X0 [R/S]

Display shown each successive approximation until root is found.

If more than one Real Solutions enter another guess and [R/S]

Maximum of 3 Real Root.

-------------------------------------------------------
Example:

x^3 - 4x^2 + 6x - 24 = 0

f [PRGM] or [GTO] 000
1 [R/S]
4 [CHS] [R/S]
6 [R/S]
24 [CHS] [R/S]
20 [R/S] // My starting guess
Display successive approximation search and stop when root is found.

Answer Display 4

X=4

---------------------------------------------
-2x^3 + 3x^2 + 4x - 5 = 0

f [PRGM] or [GTO] 000
2 [CHS] [R/S]
3 [R/S]
4 [R/S]
5 [CHS] [R/S]

10 [R/S] ...............display 1.8508
0 [R/S] .................display 1
5 [CHS] [R/S] ..........display -1.3508
-----------------------------------------------
Program: ALG Mode
Code:
 STO 0 R/S STO 1 R/S STO 2 R/S STO 3 R/S STO 4 x 2 x RCL 0 + RCL 1 x RCL 4 X^2 - RCL 3 รท (RCL 4 x 3 x RCL 0 + (RCL 1 x 2) x RCL 4 + RCL 2) =  STO 5 - RCL 4 = X=0 GTO 049 RCL 5 PSE GTO 009 RCL 5 GTO 008

Gamo
 « Next Oldest | Next Newest »

 Messages In This Thread (12C Platinum) Cubic Equation - Gamo - 01-12-2019 09:27 AM RE: (12C Platinum) Cubic Equation - Albert Chan - 01-12-2019, 01:39 PM RE: (12C Platinum) Cubic Equation - Albert Chan - 02-04-2019, 04:10 PM RE: (12C Platinum) Cubic Equation - Thomas Klemm - 02-04-2019, 08:13 PM RE: (12C Platinum) Cubic Equation - Albert Chan - 02-05-2019, 10:24 PM RE: (12C Platinum) Cubic Equation - Gamo - 02-05-2019, 04:24 AM RE: (12C Platinum) Cubic Equation - Thomas Klemm - 02-05-2019, 06:09 AM RE: (12C Platinum) Cubic Equation - Thomas Klemm - 02-05-2019, 06:20 AM

User(s) browsing this thread: 1 Guest(s)