Post Reply 
Derivatives on HP 42S
08-26-2018, 08:00 PM
Post: #22
RE: Derivatives on HP 42S
(08-26-2018 04:47 PM)lrdheat Wrote:  Why is dx successful in solve, but not as a means to find dx of a specific x value?

(08-21-2018 12:34 AM)Thomas Klemm Wrote:  For a small discrete h, this can be approximated by

\(\frac{\partial f}{\partial x}\approx\frac{\Im[f(x + ih)]}{h}\)

Since we search for stationary points we set:

\(\frac{\partial f}{\partial x}=0\)

Which we approximate with just:

\(\Im[f(x + ih)]=0\)

To return an approximation for the derivative we have to divide \(\Im[f(x + ih)]\) by \(h\):
Code:
LBL "dF"
MVAR "x"
MVAR "h"
RCL "x"
RCL "h"
COMPLEX
XEQ "Fx"
COMPLEX
RCLĂ· "h"
END

With your example:
Code:
LBL "Fx"
SIN
END

We can calculate the value of \(\frac{d}{dx}\sin(x)\) at \(x=1\):

1E-6
STO "h"
1
STO "x"
XEQ "dF"

x: 5.40302305868e-1


Compare this with \(\cos(1)\):

1
COS

x: 5.40302305868e-1


Best regards
Thomas
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
Derivatives on HP 42S - lrdheat - 08-20-2018, 03:03 AM
RE: Derivatives on HP 42S - Thomas Klemm - 08-20-2018, 04:38 AM
RE: Derivatives on HP 42S - Thomas Klemm - 08-20-2018, 07:43 AM
RE: Derivatives on HP 42S - Albert Chan - 08-20-2018, 11:54 PM
RE: Derivatives on HP 42S - lrdheat - 08-20-2018, 10:57 PM
RE: Derivatives on HP 42S - Thomas Klemm - 08-20-2018, 11:43 PM
RE: Derivatives on HP 42S - Thomas Klemm - 08-21-2018, 12:34 AM
RE: Derivatives on HP 42S - Thomas Klemm - 08-21-2018, 01:35 AM
RE: Derivatives on HP 42S - lrdheat - 08-21-2018, 02:24 AM
RE: Derivatives on HP 42S - Thomas Klemm - 08-21-2018, 06:14 AM
RE: Derivatives on HP 42S - RMollov - 08-23-2018, 12:58 PM
RE: Derivatives on HP 42S - lrdheat - 08-24-2018, 02:51 AM
RE: Derivatives on HP 42S - Thomas Klemm - 08-24-2018, 05:52 AM
RE: Derivatives on HP 42S - lrdheat - 08-25-2018, 05:19 PM
RE: Derivatives on HP 42S - Albert Chan - 08-25-2018, 07:03 PM
RE: Derivatives on HP 42S - Thomas Klemm - 08-25-2018, 06:05 PM
RE: Derivatives on HP 42S - Thomas Klemm - 08-25-2018, 08:00 PM
RE: Derivatives on HP 42S - Albert Chan - 08-25-2018, 09:20 PM
RE: Derivatives on HP 42S - Thomas Klemm - 08-26-2018, 04:54 AM
RE: Derivatives on HP 42S - Thomas Okken - 08-26-2018, 01:54 PM
RE: Derivatives on HP 42S - lrdheat - 08-26-2018, 04:47 PM
RE: Derivatives on HP 42S - Albert Chan - 08-26-2018, 08:39 PM
RE: Derivatives on HP 42S - Thomas Klemm - 08-26-2018 08:00 PM
RE: Derivatives on HP 42S - Albert Chan - 08-29-2018, 01:52 PM



User(s) browsing this thread: 1 Guest(s)