How do I learn RPL and solve this problem with it?

09252017, 06:36 PM
(This post was last modified: 09252017 06:52 PM by mfleming.)
Post: #17




RE: How do I learn RPL and solve this problem with it?
(09252017 05:39 PM)pier4r Wrote: Anyway I had to stop the process because after 20+ hours it was not finished. Hi guys, I believe you've been misled by the OP's approach of precomputing all possible values of two resistors in parallel (combinatorial explosion), when in reality there are only a few combinations of two resistors that will meet the original criteria of being within 1% of the desired resistance value. Consider Req = R1  R2 = R1*R2/(R1+R2). If R1 = R2, then R1 & R2 = 2*Req. Neither R1 or R2 can be less that Req which puts a lower bound on the values we can choose. Also notice that if R2 increases to infinity then the computed Req value will converge on R1. If 2*Req happens to be a valid discrete resistor value, pick two resistors of that value and we're done. Highly unlikely though, so pick R1 and R2 such that they bracket 2*Req. If we maintain that R1 is less than 2*Req, then there are only a few discrete resistor values that satisfy the constraint Req < R1 < 2*Req. Furthermore if R1 is fixed and R1  R2 > Req, then any further increase in the value of R2 will only diverge from the desired Req value. To use pier4r's example value of 177 for Req, 2*Req is 354 which is not a valid discrete resistor value. So choose R1=330 and R2=390. According to the previous constraint, the discrete value of R1 can only be 180, 200, 270, 300 and 330. 330390 = 178.8 which is greater than 177, so no point increasing R2 any further. We will need to decrease R1 and compute again. 300390 = 169.5 < 177 and 300470 = 183.1 > 177 so keep the value of R2 and decrease the value of R1 again. 270470 = 171.5 < 177 and 270560 = 182.1 > 177 so again keep the value of R2 and decrease the value of R1. I won't bore you with the rest of the series, but there are obviously a limited number of pairs to examine. Keep them sorted by how close they are to the desired resistor value and pick the closest pair. Give this a try in RPL! ~Mark Remember kids, "In a democracy, you get the government you deserve." 

« Next Oldest  Next Newest »

User(s) browsing this thread: 1 Guest(s)