Post Reply 
Accurate Bernoulli numbers on the 41C, or "how close can you get"?
03-09-2014, 07:12 PM
Post: #1
Accurate Bernoulli numbers on the 41C, or "how close can you get"?
In the last weeks there have been some discussions regarding various ways of determining Bernoulli numbers on the 41-series and other calculators. The usual formulas included powers with exponents greater than 100, leading to reduced accuracy since an exact result would require at least twelve or thirteen digits for the base as opposed to the ten we have. Another problem is the available working range, so that the used algorithm has to make sure no intermediate result exceeds the limit at 9,999...E99.

So I wondered if there might be a way of evaluating all possible Bernoulli numbers within the working range sufficiently fast and, more important, as accurately as possible. Which leads to the question: how close can you get in the face of accumulating roundoff errors? Even a simple multiplication can be surprisingly inaccurate, the result may be off by up to 5 units in the last place. Try a simple \(\pi·\pi\) or \(e·e\), and the result on a correctly working 10-digit calculator is 3 ULP high or low. So far, so bad.

Here is the approach used in the following program. As usual, the lower Bernoulli numbers B0 to B8 are given directly. For n = 2...8 a simple quadratic equation can do the trick. For n = 10 to 116 (largest value within the 41's working range) the following formula was used:

\(\large B_n  =  4 \pi · \zeta(n) · e^{(0,5 + \frac{1}{12n} - \frac{1}{360n^3} + \frac{1}{1260n^5} + ...)} · (\frac{n}{2 \pi e})^{n+0,5} \)

For n ≥ 10 and 10-digit accuracy three terms of the series in the exponent of the e-function are sufficient.
The expression \(\frac{1}{12n} - \frac{1}{360n^3} + \frac{1}{1260n^5}\) can be evaluated as \(\frac{210n^4 - 7n^2 + 2}{2520n^5}\).

A literal implementation of the complete formula would yield results with substantial errors. At least the last two digits would be off. So a different way to handle this formula had to be found.

Within the relevant domain, the factors at the left (\(4\pi=10·0,4\pi,  \zeta\) and the exponential function) all start with 1. They do not vary much for n = 10...116:

\(B_n = 10 · 1,256... · 1,000... · 1,65... · (\frac{n}{2 \pi e})^{n+0,5} \)

The basic idea now is to evaluate all three factors minus one so that one additional digit is gained. Obtaining \(\zeta - 1\) is trivial, and for the exponential function there is a dedicated \(e^x-1\) command. The multiplication of three values close to 1 can be done in a way that preserves one additional digit of working precision. Since the product of the three factors is something between 2,07 and 2,09, the program even tries to calculate half of this minus 1 (and finally multiplies this +1 with twice the power), so that again a precious digit is saved. The program uses a 9-digit approximation of \(0,4\pi - 1 = rad(72°)-1\) which is slightly low, so a correction term is applied. Its exact value should be near 7,2E-10, but tests showed that in this case even better accuracy is obtained with a slighty lower value close to 6E-10 (cf. line 89).

Now let's look at the power at the right. For a correct 10-digit result, the base would have to carry at least 12 or 13 digits. Here is how this is accomplished in the program:

\((\frac{n}{2 \pi e})^{n+0,5}\)
\( = (n · 0,05854983152432)^{n+0,5}\)
\(\approx (n · 0,05854983)^{n+0,5} + 1,52432·10^{-9}·n·(n+0,5)·(n · 0,05854983)^{n-0,5}\)

For n = 10...116 the base of the first power carries at most 9 digits, so both the base and the exponent are exact. However, the 41's power function sometimes truncates its result instead of rounding it, so the constant 1,52432E-9 is better rounded up to 1,5244E-9.

Here is the 41C code:
Code:
 01  LBL"BN"
 02  ABS
 03  INT
 04  STO 00
 05  SIGN
 06  RCL 00
 07  X>Y?
 08  GTO 01
 09  1,5
 10  *
 11  -
 12  GTO 99
 13  LBL 01
 14  2
 15  MOD
 16  -
 17  X=0?
 18  GTO 99
 19  9
 20  RCL 00
 21  X>Y?
 22  GTO 02
 23  6
 24  -
 25  X^2
 26  3
 27  *
 28  42
 29  -
 30  ABS
 31  1/X
 32  GTO 98
 33  LBL 02
 34  5 E-10
 35  RCL 00
 36  CHS
 37  1/X
 38  Y^X
 39  INT
 40  STO 01
 41  0
 42  ISG Y
 43  LBL 03
 44  RCL Y
 45  RCL 00
 46  CHS
 47  Y^X
 48  +
 49  DSE Y
 50  DSE 01
 51  GTO 03
 52  RCL 00
 53  X^2
 54  ENTER
 55  ENTER
 56  210
 57  *
 58  7
 59  -
 60  *
 61  2
 62  +
 63  2520
 64  /
 65  RCL 00
 66  ENTER
 67  X^2
 68  X^2
 69  *
 70  /
 71  ,5
 72  +
 73  E^X-1
 74  ST* Z
 75  +
 76  +
 77  ENTER
 78  ENTER
 79  1
 80  -
 81  72
 82  D-R
 83  FRC
 84  +
 85  X<>Y
 86  LASTX
 87  *
 88  +
 89  5,8 E-10
 90  +
 91  2
 92  /
 93  STO 01
 94  RCL 00
 95  ,05854983
 96  *
 97  ENTER
 98  ENTER
 99  RCL 00
100  ,5
101  +
102  Y^X
103  ST+ X
104  ENTER
105  ENTER
106  R^
107  /
108  1,5244 E-9
109  *
110  RCL 00
111  2
112  /
113  RCL 00
114  X^2
115  +
116  *
117  +
118  RCL 01
119  X<>Y
120  *
121  LASTX
122  +
123  10
124  *
125  LBL 98
126  RCL 00
127  -4
128  MOD
129  SIGN
130  *
131  CHS
132  LBL 99
133  END

One may now ask if the result is worth all the effort. I think it is. In total there are 60 possible non-zero results within the 41's working range (n = 0, 1, 2, 4, 6, 8, ..., 114, 116). The program returns 45 of these correctly rounded or truncated after 10 digits. The rest is 1 ULP high or low. I did not find any larger errors. In other words: the results are close to machine accuracy.

BTW, while the largest possible result is B116, the program can also provide B118. The expected OUT OF RANGE error appears in the last calculation step when the program tries to multiply X by 10. At this point, pressing [X<>Y] reveals B118 as 6,116052000E+100. ;-)

Of course suggestions for improvements are always welcome.

Dieter
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
Accurate Bernoulli numbers on the 41C, or "how close can you get"? - Dieter - 03-09-2014 07:12 PM



User(s) browsing this thread: 1 Guest(s)