HP 11C real root finder [Newton Method]

01122014, 01:26 PM
Post: #5




RE: HP 11C real root finder [Newton Method]
(01122014 08:31 AM)Namir Wrote: ...h = 0.001*(ABS(X)+1) First of all, instead of multiplying with \(10^{3}\), dividing by \(10^{3}\) is one step shorter. ;) This method for determining h will work in most cases, but not for very small arguments. Consider \(x = 10^{4}\) or even \(x = 10^{40}\). That's why I prefer \(h = x/10^4\). On the 34s, the result can be easily rounded to 1 or 2 significant digits (RSD 1) to prevent slight roundoff errors. As usual, \(x=0\) is handled as \(x=1\). Dieter 

« Next Oldest  Next Newest »

Messages In This Thread 
HP 11C real root finder [Newton Method]  Carlos CM (Mexico)  01092014, 11:59 PM
RE: HP 11C real root finder [Newton Method]  Thomas Klemm  01102014, 12:57 AM
RE: HP 11C real root finder [Newton Method]  Carlos CM (Mexico)  01102014, 05:28 PM
RE: HP 11C real root finder [Newton Method]  Namir  01122014, 08:31 AM
RE: HP 11C real root finder [Newton Method]  Dieter  01122014 01:26 PM
RE: HP 11C real root finder [Newton Method]  Namir  01152014, 05:53 AM
RE: HP 11C real root finder [Newton Method]  Dieter  01152014, 08:38 PM
RE: HP 11C real root finder [Newton Method]  Thomas Klemm  01142014, 08:56 PM

User(s) browsing this thread: 1 Guest(s)