A case against the x<>y key

05182015, 10:06 PM
Post: #50




RE: A case against the x<>y key
You could use the calculation of cos(x) as a practical example:
\(\begin{align*} \cos(x) &= 1\frac{x^2}{2!}+\frac{x^4}{4!}\frac{x^6}{6!}+\frac{x^8}{8!}\frac{x^{10}}{10!}+O(x^{12})\\ &= 1\frac{x^2}{1\cdot2}(1\frac{x^2}{3\cdot4}(1\frac{x^2}{5\cdot6}(1\frac{x^2}{7\cdot8}(1\frac{x^2}{9\cdot10}))))+O(x^{12}) \end{align*}\) Using the x<>y key: x^{2} ENTER ENTER ENTER 90 ÷ 1 x<>y − × 56 ÷ 1 x<>y − × 30 ÷ 1 x<>y − × 12 ÷ 1 x<>y − × 2 ÷ 1 x<>y − Using the CHS key: x^{2} CHS ENTER ENTER ENTER 90 ÷ 1 + × 56 ÷ 1 + × 30 ÷ 1 + × 12 ÷ 1 + × 2 ÷ 1 + Kind regards Thomas 

« Next Oldest  Next Newest »

User(s) browsing this thread: 1 Guest(s)