desolve y'=(x+y)^2
05-02-2015, 09:34 PM
Post: #26
 salvomic Senior Member Posts: 1,396 Joined: Jan 2015
RE: desolve y'=(x+y)^2
(05-02-2015 05:30 AM)parisse Wrote:  Xcas can solve this equation. It is a Ricatti equation, you can solve it by giving a particular solution, otherwise the system rewrites it as a 2nd order equation.

please, can you explain a practical example to try?
thank you

∫aL√0mic (IT9CLU) :: HP Prime 50g 41CX 71b 42s 39s 35s 12C 15C - DM42, DM41X - WP34s Prime Soft. Lib
 « Next Oldest | Next Newest »

 Messages In This Thread desolve y'=(x+y)^2 - salvomic - 05-01-2015, 02:45 PM RE: desolve y'=(x+y)^2 - Tugdual - 05-01-2015, 04:11 PM RE: desolve y'=(x+y)^2 - salvomic - 05-01-2015, 04:14 PM RE: desolve y'=(x+y)^2 - Arno K - 05-01-2015, 04:41 PM RE: desolve y'=(x+y)^2 - salvomic - 05-01-2015, 04:48 PM RE: desolve y'=(x+y)^2 - Tugdual - 05-01-2015, 07:06 PM RE: desolve y'=(x+y)^2 - salvomic - 05-01-2015, 07:16 PM RE: desolve y'=(x+y)^2 - lrdheat - 05-01-2015, 07:56 PM RE: desolve y'=(x+y)^2 - lrdheat - 05-01-2015, 07:57 PM RE: desolve y'=(x+y)^2 - salvomic - 05-01-2015, 08:06 PM RE: desolve y'=(x+y)^2 - Tugdual - 05-01-2015, 08:26 PM RE: desolve y'=(x+y)^2 - salvomic - 05-01-2015, 08:34 PM RE: desolve y'=(x+y)^2 - parisse - 05-02-2015, 05:30 AM RE: desolve y'=(x+y)^2 - salvomic - 05-02-2015, 07:00 AM RE: desolve y'=(x+y)^2 - salvomic - 05-02-2015 09:34 PM RE: desolve y'=(x+y)^2 - parisse - 05-02-2015, 10:50 AM RE: desolve y'=(x+y)^2 - salvomic - 05-02-2015, 12:36 PM RE: desolve y'=(x+y)^2 - parisse - 05-02-2015, 12:43 PM RE: desolve y'=(x+y)^2 - salvomic - 05-02-2015, 12:49 PM RE: desolve y'=(x+y)^2 - parisse - 05-02-2015, 06:15 PM RE: desolve y'=(x+y)^2 - salvomic - 05-02-2015, 07:32 PM RE: desolve y'=(x+y)^2 - salvomic - 05-02-2015, 04:07 PM RE: desolve y'=(x+y)^2 - Tugdual - 05-02-2015, 04:45 PM RE: desolve y'=(x+y)^2 - salvomic - 05-02-2015, 04:59 PM RE: desolve y'=(x+y)^2 - Tugdual - 05-02-2015, 05:21 PM RE: desolve y'=(x+y)^2 - salvomic - 05-02-2015, 05:23 PM RE: desolve y'=(x+y)^2 - parisse - 05-03-2015, 06:08 AM RE: desolve y'=(x+y)^2 - salvomic - 05-03-2015, 07:48 AM RE: desolve y'=(x+y)^2 - parisse - 05-04-2015, 07:15 AM RE: desolve y'=(x+y)^2 - salvomic - 05-04-2015, 08:34 AM RE: desolve y'=(x+y)^2 - salvomic - 05-11-2015, 09:30 PM

User(s) browsing this thread: 1 Guest(s)