Post Reply 
desolve y'=(x+y)^2
05-02-2015, 10:50 AM
Post: #15
RE: desolve y'=(x+y)^2
Indeed, you can also solve it by this kind of substitution. Maybe I can add another special case in desolve.
Your equation returns
(c_1*x^2+c_2*x+c_2)/(c_1*x+c_2)
with the latest Xcas. You can get your solution with c_2=1.
You are missing y=x with your general solution.
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
desolve y'=(x+y)^2 - salvomic - 05-01-2015, 02:45 PM
RE: desolve y'=(x+y)^2 - Tugdual - 05-01-2015, 04:11 PM
RE: desolve y'=(x+y)^2 - salvomic - 05-01-2015, 04:14 PM
RE: desolve y'=(x+y)^2 - Arno K - 05-01-2015, 04:41 PM
RE: desolve y'=(x+y)^2 - salvomic - 05-01-2015, 04:48 PM
RE: desolve y'=(x+y)^2 - Tugdual - 05-01-2015, 07:06 PM
RE: desolve y'=(x+y)^2 - salvomic - 05-01-2015, 07:16 PM
RE: desolve y'=(x+y)^2 - lrdheat - 05-01-2015, 07:56 PM
RE: desolve y'=(x+y)^2 - lrdheat - 05-01-2015, 07:57 PM
RE: desolve y'=(x+y)^2 - salvomic - 05-01-2015, 08:06 PM
RE: desolve y'=(x+y)^2 - Tugdual - 05-01-2015, 08:26 PM
RE: desolve y'=(x+y)^2 - salvomic - 05-01-2015, 08:34 PM
RE: desolve y'=(x+y)^2 - parisse - 05-02-2015, 05:30 AM
RE: desolve y'=(x+y)^2 - salvomic - 05-02-2015, 07:00 AM
RE: desolve y'=(x+y)^2 - salvomic - 05-02-2015, 09:34 PM
RE: desolve y'=(x+y)^2 - parisse - 05-02-2015 10:50 AM
RE: desolve y'=(x+y)^2 - salvomic - 05-02-2015, 12:36 PM
RE: desolve y'=(x+y)^2 - parisse - 05-02-2015, 12:43 PM
RE: desolve y'=(x+y)^2 - salvomic - 05-02-2015, 12:49 PM
RE: desolve y'=(x+y)^2 - parisse - 05-02-2015, 06:15 PM
RE: desolve y'=(x+y)^2 - salvomic - 05-02-2015, 07:32 PM
RE: desolve y'=(x+y)^2 - salvomic - 05-02-2015, 04:07 PM
RE: desolve y'=(x+y)^2 - Tugdual - 05-02-2015, 04:45 PM
RE: desolve y'=(x+y)^2 - salvomic - 05-02-2015, 04:59 PM
RE: desolve y'=(x+y)^2 - Tugdual - 05-02-2015, 05:21 PM
RE: desolve y'=(x+y)^2 - salvomic - 05-02-2015, 05:23 PM
RE: desolve y'=(x+y)^2 - parisse - 05-03-2015, 06:08 AM
RE: desolve y'=(x+y)^2 - salvomic - 05-03-2015, 07:48 AM
RE: desolve y'=(x+y)^2 - parisse - 05-04-2015, 07:15 AM
RE: desolve y'=(x+y)^2 - salvomic - 05-04-2015, 08:34 AM
RE: desolve y'=(x+y)^2 - salvomic - 05-11-2015, 09:30 PM



User(s) browsing this thread: 1 Guest(s)