(HP71B) integer determinant
|
02-17-2024, 05:03 PM
Post: #3
|
|||
|
|||
RE: (HP71B) integer determinant
It is hard to see why delayed division (by 1 step) preserve integer.
Perhaps we can start with smaller 3×3 matrix Cas> m := [[a11,a12,a13],[a21,a22,a23],[a31,a32,a33]] Say we pick a11 as pivot, and we clear pivot column. Cas> m[2] := a11*m[2] - a21*m[1] Cas> m[3] := a11*m[3] - a31*m[1] \(\left(\begin{array}{ccc} a_{11} & a_{12} & a_{13} \\ 0 & a_{11}\; a_{22}- a_{12}\; a_{21} & a_{11}\; a_{23} - a_{13}\; a_{21} \\ 0 & a_{11}\; a_{32}- a_{12}\; a_{31} & a_{11}\; a_{33} - a_{13}\; a_{31} \end{array}\right) \) This new matrix still have integer entries, with determinant scaled up by pivot^2 If we divide by pivot right the way, entries may have fractional part. If we remove pivot row/col, new matrix have determinant scaled up by pivot^1 Fractional part issue remains, which is easily shown setting pivot = 0 Cas> m := subMat(m, [2,2], [3,3]) Cas> m(a11=0) \(\left(\begin{array}{ccc} - a_{12}\; a_{21} & - a_{13}\; a_{21} \\ - a_{12}\; a_{31} & - a_{13}\; a_{31} \end{array}\right) \) However, if we delay division by 1 step, cells are divisible by previous pivot. (-a12*a21) * (-a13*a31) - (-a12*a31) * (-a13*a21) = 0 |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
(HP71B) integer determinant - Albert Chan - 02-16-2024, 10:36 PM
RE: (HP71B) integer determinant - Albert Chan - 02-16-2024, 11:16 PM
RE: (HP71B) integer determinant - Albert Chan - 02-17-2024 05:03 PM
RE: (HP71B) integer determinant - robve - 02-18-2024, 03:05 PM
RE: (HP71B) integer determinant - Albert Chan - 02-18-2024, 03:33 PM
RE: (HP71B) integer determinant - J-F Garnier - 02-21-2024, 08:23 AM
RE: (HP71B) integer determinant - Albert Chan - 02-21-2024, 01:31 PM
|
User(s) browsing this thread: 1 Guest(s)