(DM42) Matrix exponential
|
08-23-2023, 07:55 PM
Post: #25
|
|||
|
|||
RE: (DM42) Matrix exponential
Trivia, for A = 2x2 matrix, e^A only need its eigenvalues. (i.e. P, P-1 not needed)
A = P D P-1 D diagonal has eigenvalues of A = c ± g --> D-c has diagonal of ± g Let X = A-c --> X^2 = g^2 // × identity matrix sinh(X) = (1 + X^2/3! + X^4/5! + ...) * X = sinh(g)/g * X cosh(X) = (1 + X^2/2! + X^4/4! + ...) = cosh(g) // × identity matrix e^X = sinh(X) + cosh(X) = sinh(g)/g * X + cosh(g) XCas> eA := ((sinh(g)/g) * (A-c) + cosh(g)) * e^c XCas> A := [[a11,a12],[a21,a22]]; XCas> x1, x2 := eigenvalues(A) :; XCas> c, g := [x1+x2, x1-x2]/2 :; XCas> simplify(hyp2exp(exp(A) - eA)) // confirmed symbolically \(\left(\begin{array}{cc}0&0\\0&0\end{array}\right)\) |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 1 Guest(s)