HP50g simplifing a root
|
10-01-2020, 07:31 AM
(This post was last modified: 10-01-2020 01:28 PM by Albert Chan.)
Post: #6
|
|||
|
|||
RE: HP50g simplifing a root
Here is an equivalent version, faster and shorter.
sign(b√k) = sign(b) = sign(m) \(|b| \sqrt{k} = |b| \sqrt{{n/a-a^2 \over 3b^2}} = \sqrt{{n/a-a^2 \over 3}} \) XCas> find_a(n,m) := remove(a -> remain(3*m, n/a+8*a*a), divisors(n) .* sign(n)) XCas> find_ar(n,m) := map(a -> a + sign(m)*sqrt((n/a-a*a)/3) , find_a(n,m)) XCas> find_ar(300940299, 103940300) → \([99 + 100 \sqrt{101}]\) |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 1 Guest(s)