HP50g simplifing a root
|
09-30-2020, 10:50 PM
(This post was last modified: 10-01-2020 05:09 AM by Albert Chan.)
Post: #5
|
|||
|
|||
RE: HP50g simplifing a root
(09-30-2020 02:22 AM)Albert Chan Wrote: (a + b√k)³ = a³ + 3a²b√k + 3ab²k + b³k√k Instead of solving cubic, we can simply filter all (a,b), keeping only integers. Since a divides n, just check divisors of n: XCas> find_ab(n,m) := remove(x -> frac(x[1]), map(divisors(n).*sign(n) , a->[a, 3*m*a/(n+8*a^3)])) XCas> find_abk(n,m) := map(find_ab(n,m), x -> x[0] + x[1] * sqrt((n/x[0]-x[0]^2)/(3*x[1]^2))) XCas> find_abk(26,-15) → \([2 - \sqrt{3}]\) XCas> find_abk(9416, -4256) → \([11 - 7 \sqrt{5}]\) XCas> simplify((99+100*sqrt(101))^3) → \(300940299 + 103940300\sqrt{101}\) XCas> find_abk(300940299, 103940300) → \([99 + 100 \sqrt{101}]\) |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 1 Guest(s)