(71B) Euler-Taylor method for the HP-71B
12-15-2019, 08:25 AM (This post was last modified: 12-15-2019 08:26 AM by Csaba Tizedes.)
Post: #12
 Csaba Tizedes Senior Member Posts: 505 Joined: May 2014
RE: (71B) Euler-Taylor method for the HP-71B
(12-15-2019 12:23 AM)Namir Wrote:  Repeating line 70 generates more error since that step has no theoretical justification. I did try it and the percent error jumped significantly!!!

Of course you must to store the temporary Euler estimation (YE) first:
50 D1=FND(X,Y)
60 X=X+H @ YE=Y+H*D1

Then use this, here the Y is totally same calculated as earlier:
70 Y=YE+H/2*(FND(X,YE)-D1)

We can repeat the calculation ("correction") of Y use the Euler estimation (YE) and the previously calculated, second order estimated Y:
75 Y=YE+H/2*(FND(X,Y)-D1)

Csaba
 « Next Oldest | Next Newest »

 Messages In This Thread (71B) Euler-Taylor method for the HP-71B - Namir - 12-07-2019, 04:36 PM RE: (71B) Euler-Taylor method for the HP-71B - Csaba Tizedes - 12-10-2019, 06:02 PM RE: (71B) Euler-Taylor method for the HP-71B - Namir - 12-11-2019, 10:07 PM RE: (71B) Euler-Taylor method for the HP-71B - Albert Chan - 12-13-2019, 02:12 PM RE: (71B) Euler-Taylor method for the HP-71B - Namir - 12-13-2019, 04:10 PM RE: (71B) Euler-Taylor method for the HP-71B - Albert Chan - 12-13-2019, 04:43 PM RE: (71B) Euler-Taylor method for the HP-71B - Csaba Tizedes - 12-14-2019, 08:44 AM RE: (71B) Euler-Taylor method for the HP-71B - Namir - 12-15-2019, 12:23 AM RE: (71B) Euler-Taylor method for the HP-71B - Csaba Tizedes - 12-15-2019 08:25 AM RE: (71B) Euler-Taylor method for the HP-71B - Albert Chan - 12-15-2019, 08:14 PM RE: (71B) Euler-Taylor method for the HP-71B - Namir - 12-13-2019, 04:07 PM RE: (71B) Euler-Taylor method for the HP-71B - Namir - 12-13-2019, 09:16 PM RE: (71B) Euler-Taylor method for the HP-71B - Namir - 12-14-2019, 03:33 AM RE: (71B) Euler-Taylor method for the HP-71B - Namir - 12-16-2019, 11:23 PM

User(s) browsing this thread: 1 Guest(s)