(12C+) Bernoulli Number
|
07-28-2019, 11:21 AM
(This post was last modified: 07-18-2023 12:09 AM by John Keith.)
Post: #8
|
|||
|
|||
RE: (12C+) Bernoulli Number
(07-28-2019 12:02 AM)Albert Chan Wrote: I lookup "A Source Book in Mathematics", chapter "On the Bernoulli numbers": That is a very neat method, I was not aware of that one. However, it seems that all similar exact methods require n+(n-1) storage registers to calculate B(n) since one needs to keep the (n-1)th row of the difference table in memory while calculating the nth row. EDIT: I tried your program as well as the Akiyama-Tanigawa method as used in the third program here on the HP-48G and both methods fail due to catastrophic rounding error for n>10. These methods may only be practical for languages that use exact rational arithmetic. |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
(12C+) Bernoulli Number - Gamo - 07-27-2019, 06:41 AM
RE: (12C+) Bernoulli Number - Albert Chan - 07-27-2019, 12:41 PM
RE: (12C+) Bernoulli Number - Gamo - 07-27-2019, 01:40 PM
RE: (12C+) Bernoulli Number - John Keith - 07-27-2019, 07:49 PM
RE: (12C+) Bernoulli Number - Albert Chan - 07-28-2019, 12:02 AM
RE: (12C+) Bernoulli Number - John Keith - 07-28-2019 11:21 AM
RE: (12C+) Bernoulli Number - Albert Chan - 08-30-2023, 09:46 PM
RE: (12C+) Bernoulli Number - Albert Chan - 09-11-2023, 03:48 PM
RE: (12C+) Bernoulli Number - Albert Chan - 07-28-2019, 01:08 AM
RE: (12C+) Bernoulli Number - Gamo - 07-28-2019, 02:29 AM
RE: (12C+) Bernoulli Number - Albert Chan - 07-31-2019, 05:14 PM
RE: (12C+) Bernoulli Number - Albert Chan - 09-12-2023, 05:59 PM
|
User(s) browsing this thread: 1 Guest(s)