HP 17bII+ Silver solver
09-17-2018, 06:30 AM (This post was last modified: 09-18-2018 09:47 AM by Don Shepherd.)
Post: #9
 Don Shepherd Senior Member Posts: 659 Joined: Dec 2013
RE: HP 17bII+ Silver solver
How about a nifty, elegant, simple number base conversion Solver equation for the 17b/17bii, courtesy Thomas Klemm:

BC:ANS=N+(FROM-TO)$$\times \Sigma$$(I:0:LOG(N)$$\div$$LOG(TO):1:L(N:IDIV(N:TO))$$\times$$FROM^I)

Note: either FROM or TO must be 10 unless you are doing HEX conversions
 « Next Oldest | Next Newest »

 Messages In This Thread HP 17bII+ Silver solver - pinkman - 09-14-2018, 09:20 PM RE: HP 17bII+ Silver solver - rprosperi - 09-14-2018, 10:14 PM RE: HP 17bII+ Silver solver - Don Shepherd - 09-15-2018, 12:05 AM RE: HP 17bII+ Silver solver - pinkman - 09-15-2018, 04:36 AM RE: HP 17bII+ Silver solver - rprosperi - 09-15-2018, 11:55 PM RE: HP 17bII+ Silver solver - pinkman - 09-16-2018, 09:59 PM RE: HP 17bII+ Silver solver - rprosperi - 09-16-2018, 10:23 PM RE: HP 17bII+ Silver solver - rprosperi - 09-17-2018, 12:48 PM RE: HP 17bII+ Silver solver - Thomas Klemm - 09-16-2018, 11:05 PM RE: HP 17bII+ Silver solver - Don Shepherd - 09-17-2018 06:30 AM RE: HP 17bII+ Silver solver - Thomas Klemm - 09-17-2018, 07:49 AM RE: HP 17bII+ Silver solver - Don Shepherd - 09-17-2018, 09:17 AM RE: HP 17bII+ Silver solver - Martin Hepperle - 09-17-2018, 10:24 AM RE: HP 17bII+ Silver solver - pinkman - 09-28-2018, 01:33 PM RE: HP 17bII+ Silver solver - Jlouis - 09-28-2018, 07:47 PM RE: HP 17bII+ Silver solver - mfleming - 09-29-2018, 01:37 AM RE: HP 17bII+ Silver solver - Jlouis - 09-29-2018, 02:25 AM RE: HP 17bII+ Silver solver - Don Shepherd - 09-29-2018, 11:13 AM RE: HP 17bII+ Silver solver - Don Shepherd - 09-29-2018, 11:53 AM RE: HP 17bII+ Silver solver - Jlouis - 09-29-2018, 01:36 PM

User(s) browsing this thread: 1 Guest(s)