Post Reply 
A (quite) accurate ln1+x function, or "how close can you get" part II
04-09-2014, 06:44 PM (This post was last modified: 04-09-2014 07:28 PM by Dieter.)
Post: #1
A (quite) accurate ln1+x function, or "how close can you get" part II
Over the last days there has been some discussion regarding the accurate evaluation of the TVM equation. For small interest rates a dedicated ln1+x function allows significantly better accuracy than the standard method. But such a function is missing on many calculators, as well as its counterpart, a special ex–1 function.

There have been some suggestions on how to emulate a sufficiently accurate ln1+x function on calculators that do not offer one in their function set. On the one hand there is the widely know classic approach as suggested by W. Kahan in the HP-15C Advanced Functions Handbook, on the other hand some other ways based on hyperbolic functions have been suggested, both for ln1+x and ex–1.

I did some accuracy tests with these methods, the results have been posted in another thread. Among 100.000 random numbers between 1 and 10–15 these methods showed errors of about 5...9 units in the last place.

I wanted to know if this can be improved, so I tried a new approach. It does not require any exotic hyperbolics and is based on a Taylor series:

Let   \(u = 1+x\) rounded
Then \(ln(1+x)  \simeq  ln u - \frac{(u-1) - x}{u}\)

I did a test with this method, using the WP34s emulator with 16 digit standard precision. The following program was used to generate 100.000 random numbers between 1 and 10–16. Dependig on Flag A, either the classic HP/Kahan method (Flag A set) or the new method (Flag A clear) is used.

Code:
001 LBL D
002 CLSTK
003 STO 01
004 STO 02
005 # 001
006 SDL 005  ' 100.000 loops
007 STO 00
008 ,
009 4
010 7
011 1
012 1        ' set seed = 0,4711
013 SEED
014 LBL 55
015 RAN#
016 #016
018 ×
019 +/-
020 10^x
021 STO 03
022 XEQ 88   'call approximation
023 RCL 03
024 LN1+x
025 -
026 RCL L
027 ULP
028 /
029 STO↓ 01    'largest negative error in R01
030 STO↑ 02    'largest positive error in R02
031 DSE 00
032 GTO 55
033 RCL 01
034 RCL 02     'return largest errors
035 RTN

036 LBL 88
037 FS? A        ' Select method based on Flag A
038 GTO 89
039 ENTER        ' New method as suggested above
040 INC X
041 ENTER
042 DEC X
043 RCL- Z
044 x<>Y
045 /
046 +/-
047 RCL L
048 LN
049 +
050 RTN

051 LBL 89   ' HP/Kahan method as suggested in HP-15C AFH
052 ENTER
053 INC X
054 LN
055 x<>Y
056 RCL L
057 1
058 x≠? Y
059 -
060 /
061 ×
062 RTN

And here are the results:

Select HP/Kahan method:
f [SF] [A]
The = symbol appears

Start: [D]
"Running PrOGrAM"...

Result in x and y:
largest positive error: +8 ULP
largest negative error: –5 ULP

This matches the error level reported earlier.

Now let's see how the new method compares:

Select new method:
g [CF] [A]
The = symbol disappears

Start: [D]
"Running PrOGrAM"...

Result in x and y:
largest positive error: +2 ULP
largest negative error: –1 ULP

That looks much better.
Further tests showed the following error distribution:

–2 ULP: 0
–1 ULP: 10553
±0 ULP: 74440
+1 ULP: 14996
+2 ULP: 11

Edit: Another run with 1 milliion random numbers shows the same pattern:

–2 ULP: 0
–1 ULP: 105163
±0 ULP: 744963
+1 ULP: 149766
+2 ULP: 108

So nearly 99,99% of the results are within ±1 ULP.
What do you think?

Dieter
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
A (quite) accurate ln1+x function, or "how close can you get" part II - Dieter - 04-09-2014 06:44 PM



User(s) browsing this thread: 1 Guest(s)