A (quite) accurate ln1+x function, or "how close can you get" part II

02012019, 04:26 PM
Post: #5




RE: A (quite) accurate ln1+x function, or "how close can you get" part II
(01312019 07:04 PM)Albert Chan Wrote: Excess ULP error is due to correction *lowering* decimal exponent. To avoid excess ULP error, we like correction same sign as X Y = 1+X, roundedtoward 1.0 log1p(X) ~ LN(Y)  (Y1X)/Y Previous example, log1p(X = 0.00099950016) : Y = roundtoward1 of 1+X = 0.9990004999 (10 digits) log1p(X) ~ LN(Y)  (Y1X)/Y = 9.999999333e4  6.006003001e11 = 9.999999934e4 (all digits correct) 

« Next Oldest  Next Newest »

Messages In This Thread 
A (quite) accurate ln1+x function, or "how close can you get" part II  Dieter  04092014, 06:44 PM
RE: A (quite) accurate ln1+x function, or "how close can you get" part II  htom trites  04102014, 04:47 AM
RE: A (quite) accurate ln1+x function, or "how close can you get" part II  Dieter  04112014, 07:01 PM
RE: A (quite) accurate ln1+x function, or "how close can you get" part II  Albert Chan  01312019, 07:04 PM
RE: A (quite) accurate ln1+x function, or "how close can you get" part II  Albert Chan  02012019 04:26 PM

User(s) browsing this thread: 1 Guest(s)