New Ostrowski-Halley root seeking algorithm - Printable Version +- HP Forums (https://www.hpmuseum.org/forum) +-- Forum: HP Calculators (and very old HP Computers) (/forum-3.html) +--- Forum: General Forum (/forum-4.html) +--- Thread: New Ostrowski-Halley root seeking algorithm (/thread-7590.html) New Ostrowski-Halley root seeking algorithm - Namir - 01-15-2017 05:15 PM As I promised last week, here is my new algorithm that enhances Halley's method using an approach by Ostrowski (that he applied to Newton's method). To get the PDF file containing the report and the two Excel files containing the test functions click here and select the last item at the bottom to download the ZIP file associated with. The pseudo code for the new algorithm is: Code: ```Given the function f(x)=0, an initial guess, x, and a tolerance Toler for the guess: Do   h = 0.01 * (1 + |x|)   F0 = f(x)   Fp = f(x + h)   Fm = f(x - h)   Deriv1 = (Fp - Fm) / 2 / h   Deriv2 = (Fp - 2 * F0 + Fm) / h / h   Diff = F0 / Deriv1 / (1 - F0 * Deriv2 / Deriv1 / 2 / Deriv1)   z = x - Diff   Fz = f(z)   Deriv1b = (F0 - 2 * Fz) / (x - z)   Deriv2b = (Fp - 2 * Fz + Fm) / h / h   Diff2 = Fz / Deriv1b / (1 - Fz * Deriv2b / Deriv1b / 2 / Deriv1b)   x = z – Diff2 Loop Until |Diff2| < Toler  Return X as the refined guess for the root.``` The report on my website actually shows and explains two flavors for the algorithm. The test functions are applied to both flavors. Enjoy Namir RE: New Ostrowski-Halley root seeking algorithm - Namir - 01-16-2017 09:12 PM I uploaded a new version of the algorithm that compromises between the two flavors of the algorithm I posted yesterday. You can upload the new ZIP file using the link in my first message. The pseudo-code for the new version is: Code: ```Given the function f(x)=0, an initial guess, x, and a tolerance Toler for the guess: Do   h = 0.01 * (1 + |x|)   F0 = f(x)   Fp = f(x + h)   Fm = f(x - h)   Deriv1 = (Fp - Fm) / 2 / h   Deriv2 = (Fp - 2 * F0 + Fm) / h / h   Diff = F0 / Deriv1 / (1 - F0 * Deriv2 / Deriv1 / 2 / Deriv1)   z = x - Diff   Fz = f(z)   If |x - z| < h Then h = x -z   Deriv1b = (F0 - 2 * Fz) / (x - z)   Deriv2b = (Fp - 2 * Fz + Fm) / h / h   Diff2 = Fz / Deriv1b / (1 - Fz * Deriv2b / Deriv1b / 2 / Deriv1b)   x = z – Diff2 Loop Until |Diff2| < Toler  Return X as the refined guess for the root.```