![]() |
CAS: Hyperoblic CAS Transformations - Printable Version +- HP Forums (https://www.hpmuseum.org/forum) +-- Forum: HP Software Libraries (/forum-10.html) +--- Forum: HP Prime Software Library (/forum-15.html) +--- Thread: CAS: Hyperoblic CAS Transformations (/thread-14060.html) |
CAS: Hyperoblic CAS Transformations - Eddie W. Shore - 11-27-2019 01:58 PM sinhexp sinhexp(ϕ) = (e^(ϕ) - e^(-ϕ)) / 2 = ((e^ϕ)^2 - 1) / (2 * e^ϕ) Code:
coshexp coshexp(ϕ) = (e^(ϕ) + e^(-ϕ)) / 2 = ((e^ϕ)^2 + 1) / (2 * e^ϕ) Code:
tanhexp tanhexp(ϕ) = (e^(ϕ) - e^(-ϕ)) / (e^(ϕ) + e^(-ϕ)) Code:
Adding Properties addsinh addsinh(ϕ + Ω) = sinh ϕ * cosh Ω + sinh Ω * cosh ϕ Code:
addcosh addcosh(ϕ + Ω) = csoh ϕ * cosh Ω + sinh Ω * sinh ϕ Code:
addtanh addtanh(ϕ + Ω) = (tanh ϕ + tanh Ω) / (1 + tanh ϕ * tanh Ω) Code:
Squaring Properties sqsinh sqsinh(ϕ) = sinh^2 ϕ = 1/2 * cosh(2 * ϕ) - 1/2 Code:
sqcosh sqcosh(ϕ) = cosh^2 ϕ = 1/2 * cosh(2 * ϕ) + 1/2 Code:
Product Properties sinhsinh sinhsinh(ϕ, Ω) = 1/2 * (cosh(ϕ + Ω) - cosh(ϕ - Ω)) Code:
coshcosh coshcosh(ϕ, Ω) = 1/2 * (cosh(ϕ + Ω) + cosh(ϕ - Ω)) Code:
sinhcosh sinhcosh(ϕ, Ω) = 1/2 * (sinh(ϕ + Ω) + sinh(ϕ - Ω)) Code:
Source: Spiegel, Murray R. and Seymour Lipschutz, John Liu. Schuam's Outlines: Mathematical Handbook of Formulas and Tables 5th Edition McGraw Hill: New York 2018 ISBN 978-1-260-01053-4 Blog Link: http://edspi31415.blogspot.com/2019/11/hp-prime-hyperoblic-cas-transformations.html RE: CAS: Hyperoblic CAS Transformations - compsystems - 11-27-2019 02:34 PM I hope that in a next XCAS launch they are embedded by default, that is, without the need to load libraries, almost all CASs have pre-included functions. |