# HP Forums

Full Version: Testing LaTex
You're currently viewing a stripped down version of our content. View the full version with proper formatting.
Testing copy paste from Daum Equation Editor on Chrome.
Works damned well...
$$\zeta (2)=\sum _{ n=1 }^{ +\infty }{ \frac { 1 }{ { n }^{ 2 } } } =\frac { { \pi }^{ 2 } }{ 6 }$$
(03-17-2014 10:43 PM)Tugdual Wrote: [ -> ]Works damned well...

Wow, I'm also impressed:

$$\tilde{\mathfrak{S}}_{N, \eta}(\nu_{k})\approx\frac{1}{\pi}\int_{\mathbb{R}}\mathrm{d}\omega\,S(\omega)\,​\frac{\eta}{(\nu_{k}-\omega)^{2}+\eta^{2}}\quad\text{for}\quad k=1, 2, \dots, M$$
$$R=\big(\underbrace{r_{1}, r_{2}, \dots, r_{g_{1}}}_{\varrho^{}_{1}\;\text{,}\;\;r'_{1}=r^{}_{g_{1}}}, \underbrace{r_{g_{1}+1}, r_{g_{1}+2}, \dots, r_{g_{2}}}_{\varrho^{}_{2}\;\text{,}\;\;r'_{2}=r^{}_{g_{2}}}, \dots, \underbrace{r_{g_{u-1}+1}, r_{g_{u-1}+2}, \dots, r_{g_{u}}}_{\varrho^{}_{u}\;\text{,}\;\;r'_{u}=r^{}_{g_{u}}}\big)$$
Reference URL's
• HP Forums: https://www.hpmuseum.org/forum/index.php
• :