06-12-2017, 12:15 PM

Given the right ascension (α) and declination (δ) of two stars of the same epoch (J2000.0 is the most current), the distance between the stars are:

d = acos( sin δ1 * sin δ2 + cos δ1 * cos δ2 * cos (α1 – α2) )

The distance is usually given in decimal degrees.

Enter α in terms of hours, minutes, seconds (standard notation) and δ in terms of degrees, minutes, seconds (standard notation).

HP Prime Program: ANGSTAR

Example

Distance between Regulus (A) in Leo and Sadalmelik in Aquarius:

(data via Wikipedia)

Regulus: α = 10h8m23.11s, δ = +11°58’01.95”

Sadamelik: α = 22h5m47.03593s, δ = -0°19’11.4568”

Distance: 168°20’05.1793”

Source:

Meeus, Jean. Astronomical Algorithms William-Bell, Inc. Richmond, VA 1991. ISBN 0-943396-35-2

d = acos( sin δ1 * sin δ2 + cos δ1 * cos δ2 * cos (α1 – α2) )

The distance is usually given in decimal degrees.

Enter α in terms of hours, minutes, seconds (standard notation) and δ in terms of degrees, minutes, seconds (standard notation).

HP Prime Program: ANGSTAR

Code:

EXPORT ANGSTAR(α1,δ1,α2,δ2)

BEGIN

// 2017-06-08 EWS

// Angular Angle

// Degrees

HAngle:=1;

LOCAL d;

α1:=15*α1;

α2:=15*α2;

d:=ACOS(SIN(δ1)*SIN(δ2)+

COS(δ1)*COS(δ2)*COS(α1-α2));

RETURN →HMS(d);

END;

Example

Distance between Regulus (A) in Leo and Sadalmelik in Aquarius:

(data via Wikipedia)

Regulus: α = 10h8m23.11s, δ = +11°58’01.95”

Sadamelik: α = 22h5m47.03593s, δ = -0°19’11.4568”

Distance: 168°20’05.1793”

Source:

Meeus, Jean. Astronomical Algorithms William-Bell, Inc. Richmond, VA 1991. ISBN 0-943396-35-2