# HP Forums

Full Version: Parabolic Cylindrical Coordinates
You're currently viewing a stripped down version of our content. View the full version with proper formatting.
Parabolic Cylindrical Coordinates

The relationship and conversion factors between parabolic cylindrical coordinates (μ, v, ϕ) and rectangular coordinates (x, y, z) are as follows:

x = 1/2 * (μ^2 – v^2)
y = μ * v
z = z

μ = √(x + √(x^2 + y^2))
v = y / μ
z = z
(note the sequence)

where μ ≥ 0

HP Prime Program PCC2REC (Parabolic Cylindrical to Rectangular)

Code:
```EXPORT PCC2REC(μ,v,z) BEGIN // 2017-02-27 EWS // Parabolic Cylindrical // to Rectangular // μ≥0 LOCAL x:=1/2*(μ^2-v^2); LOCAL y:=μ*v; RETURN {x,y,z}; END;```

HP Prime Program REC2PBC (Rectangular to Parabolic Cylindrical)

Code:
```EXPORT REC2PCC(x,y,z) BEGIN // 2017-02-27 EWS // Rectangular to // Parabolic Cylindrical // μ≥0 LOCAL μ:=√(x+√(x^2+y^2)); LOCAL v:=y/μ; RETURN {μ,v,z}; END;```

Example

μ = 2, v = 3, z = 1
Result: x = -2.5, y = 6, z = 1

Source:
P. Moon and D.E. Spencer. Field Theory Handbook: Including Coordinate Systems Differential Equations and Their Solutions. 2nd ed. Springer-Verlag: Berlin, Heidelberg, New York. 1971. ISBN 0-387-02732-7
Reference URL's
• HP Forums: https://www.hpmuseum.org/forum/index.php
• :