# HP Forums

You're currently viewing a stripped down version of our content. View the full version with proper formatting.
Given, lines of various length from a single vertex. The angles between the lines are known.

FANAREA(list of lengths, list of angles in degrees)

The result is a list of two elements.
First element: area of the field
Second element: list: length of the connecting lines

Example:
AT&T Park
Dimensions from Clem's Blog:
http://www.andrewclem.com/Baseball/ATTPark.html

Angles measured with a protractor. So, realistically, my estimate of area is rough.

L1:={339,382,404,399,421,365,309}
L2:={30,6,9,20,9,16}
FANAREA(L1,L2) returns
{109337.870804, {191.1175010192, 46.6352856001, 63.1995292625,
144.030366611, 83.1849883392, 108.96879942}}

Area of the field: approximately 109,337.871

Note: CHAR(10) gives a line break in a string.

Code:
```  // Declare Subs SUB1(); SUB2(); EXPORT FANAREA(L1,L2); BEGIN // 2014-01-11 EWS // Area of a field // lines from vertex w/angles LOCAL I,T:=0,L3:=L2; // Degree HAngle:=1; // Validate  IF SIZE(L1)≠SIZE(L2)+1 THEN MSGBOX("Error: Wrong"+CHAR(10) +"Size"+CHAR(10) +"L2≠L1+1"); KILL; END; // Calculation FOR I FROM 1 TO SIZE(L2) DO L3(I):=SUB1(L1(I),L1(I+1),L2(I)); T:=T+SUB2(L1(I),L1(I+1),L3(I)); END; MSGBOX("Area: "+T); RETURN {T, L3}; END; // Law of Cosines SUB1(A,B,C) BEGIN RETURN √(A^2+B^2-2*A*B*COS(C)); END; //Heron's Formula SUB2(A,B,C) BEGIN LOCAL S:=(A+B+C)/2; RETURN √(S*(S-A)*(S-B)*(S-C)); END;```

Blog Entry: http://edspi31415.blogspot.com/2014/01/h...field.html
Reference URL's
• HP Forums: https://www.hpmuseum.org/forum/index.php
• :