HP Forums

Full Version: SLK 3.1 (Straight Line Kit) for the HP Prime. "Updated-Nov-2015"
You're currently viewing a stripped down version of our content. View the full version with proper formatting.
Hello! Today I just updated SLK 3.0 to 3.1 you can download it here ENJOY...

SLK has been tested on FW 6975, 7820 and 8151.

I hope you guys like it and find it useful (specially Students).

SLK 3.1 (Straight Line Kit "Updated") it is specially focused on the straight line, helping the User to find:
1. Distance between two Points.
2. Slope between two Points.
3. The equation between two points.
4. Distance between Point & Line.
5. Collinearity of 3 Points (MidPoint/EndPoint).
6. Point-Slope Equation.
7. Transforms Ax+By+C=0 to y=mx+b and vice versa.
8. Finds the coordinate representation of a straight line.
9. Determines whether or not two straight lines are parallel or Perpendicular.
10. Finds the (x) & (y) Intercepts of a straight line.
11. Finds the intersection point between two straight lines.
12. Transform a non-standard form equation of a line into a standardized form of it.


Cool, thanks for contributing! Nice program.

(05-14-2015 11:54 PM)Spybot Wrote: [ -> ]Hi Everyone!
...but first I want to thank all the people in this forum who directly or indirectly helped me up to refine and finally finish this program:
Tim, Cyrille, Han, Drd, Salvomic (excuse me if I missed someone!)...

hi Dante!
thanks a lot to have cited also me in your nice program, that's very interesting and useful.
Very compliments, it's linear, neat, beautiful.

Also PDF is well done!

Buena biblioteca, si deseas puedes agregar lo siguiente


Anexo un seudocódigo para solucionar por formula un sistema de ecuaciones lineales en dos variables

el siguiente código se ejecuta con PSEINT


Proceso sistema_de_ecuaciones_lineales
    //(c) By JaiMeza aka compSystems mayo 12 2015 www.jaimeza.org
    //(c) para ejecutarlo use http://pseint.sourceforge.net/
    imprimir "sistema de ecuaciones lineales"
    imprimir "en dos variables"
    imprimir ""
    imprimir "a1*x + b1*y + c1 = 0"
    imprimir "a2*x + b2*y + c2 = 0"
    imprimir ""
    imprimir "/!\ a1*b1 <> 0, a2*b2 <> 0,"
    definir a1, b1, c1, a2, b2, c2, d, x, y_ como reales
    definir multiplo_ como logico
    multiplo_ = falso
    imprimir ""
    imprimir "entre a1:"
        leer a1
    hasta que a1 <> 0
    imprimir "entre b1:"
        leer b1
    hasta que b1 <> 0
    imprimir "entre c1:"
    leer c1
    imprimir ""
    imprimir "entre a2:"
        leer a2
    hasta que a2 <> 0
    imprimir "entre b2:"
        leer b2
    hasta que b2 <> 0
    imprimir "entre c2:"
    leer c2
    //    imprimir a1
    //    imprimir b1
    //    imprimir a2
    //    imprimir b2
    d = (a1*b2) - (a2*b1)
    //imprimir d
    imprimir ""
    Si d=0 Entonces
        multiplo_ = ((a1 es multiplo de a2) o (a2 es multiplo de a1)) y ((b1 es multiplo de b2) o (b2 es multiplo de b1) ) y ((c1 es multiplo de c2) o  (c2 es multiplo de c1))
        Si multiplo_ = verdadero Entonces
            imprimir "Sistema Compatible Indeterminado"
            imprimir "existen infinitas soluciones o intersecciones"
            imprimir "las dos rectas son paralelas y estan juntas"
            imprimir "Sistema Incompatible"
            imprimir "no hay solucion o puntos comunes"
            imprimir "las dos rectas son paralelas y separadas"
        Fin Si
        x = (b2*c1 - b1*c2)/d
        y_ = (a1*c2 - a2*c1)/d
        imprimir "Sistema Compatible Determinado "
        imprimir "existe solucion unica, las dos rectas se cortan en un solo punto"
        imprimir ""
        imprimir "x=",x
        imprimir "y=",y_
        imprimir ""
        imprimir "la coordenada de interseccion es (", x, ", ", y_, ")"
    Fin Si

// ejemplos

// 1:
// 9*x-1 + -6*y = 3
// 4*x-1 + 6*y = 36
// a1 = 9, b1=-6, c1=3
// a2 = 4, b2=6, c2=36
// x = 3, y=4

// 2:
// 2*x-1 = 4*y
// 5+y = 10*x
// a1 = 2, b1=-4, c1=1
// a2 = 10, b2=-1, c2=5
// x = 0.5, y=0

// 3:
// 2.5*x + 4.6*y = 5
// 1*x - 2.9*y = 7
// a1 = 2.5, b1=4.6, c1=5
// a2 = 1, b2=-2.9, c2=7
// x=3.94092827 y=-1.0548523207

// 4:
// 1.2*x + 2.2*y = 1
// 6*x+11*y = 5
// a1 = 1.2, b1=2.2, c1=1
// a2 = 6, b2=11, c2=5
// no hay solución
Thank you for your useful program.
I recommend you to post on the HP Prime software directory, in this web.
Thanks Akmon I will.
Hey Spybot,
thanks for your great work, I much appreciated it !
Could you add the condition of collinearity of three points ?
And what about conic sections (circumference, parabola, ellipse) ?
Are you going to implement those in the future ?

Dante, can you also put here the code of the program (or a zip)? :-)

thank you again!


Thank you Salvomic something happened while I was uploading the file, it is available now.
(05-16-2015 04:13 PM)Spybot Wrote: [ -> ]LOL.

Thank you Salvomic something happened while I was uploading the file, it is available now.

thank you,
I downloaded it yesterday, here...

have a nice day
Hi Aries.

I think the sixth option from the main menu (MidPoint/EndPoint) will do the trick for: "collinearity of three points", I just labeled it with a different name.

Regarding to conic sections: (circumference, parabola and ellipse) It's a great Idea, in fact I've already thought about implementing something like that, it's just that time happens to be my main limitation. perhaps it could be possible in a near future.
Reference URL's