# HP Forums

You're currently viewing a stripped down version of our content. View the full version with proper formatting.
Hello! Today I just updated SLK 3.0 to 3.1 you can download it here ENJOY...

SLK has been tested on FW 6975, 7820 and 8151.

I hope you guys like it and find it useful (specially Students).

SLK 3.1 (Straight Line Kit "Updated") it is specially focused on the straight line, helping the User to find:
1. Distance between two Points.
2. Slope between two Points.
3. The equation between two points.
4. Distance between Point & Line.
5. Collinearity of 3 Points (MidPoint/EndPoint).
6. Point-Slope Equation.
7. Transforms Ax+By+C=0 to y=mx+b and vice versa.
8. Finds the coordinate representation of a straight line.
9. Determines whether or not two straight lines are parallel or Perpendicular.
10. Finds the (x) & (y) Intercepts of a straight line.
11. Finds the intersection point between two straight lines.
12. Transform a non-standard form equation of a line into a standardized form of it.

Best,
Hello,

Cool, thanks for contributing! Nice program.

Cyrille
(05-14-2015 11:54 PM)Spybot Wrote: [ -> ]Hi Everyone!
...but first I want to thank all the people in this forum who directly or indirectly helped me up to refine and finally finish this program:
Tim, Cyrille, Han, Drd, Salvomic (excuse me if I missed someone!)...

hi Dante!
thanks a lot to have cited also me in your nice program, that's very interesting and useful.
Very compliments, it's linear, neat, beautiful.

Also PDF is well done!

Salvo
Buena biblioteca, si deseas puedes agregar lo siguiente

Code:
``` Anexo un seudocódigo para solucionar por formula un sistema de ecuaciones lineales en dos variables el siguiente código se ejecuta con PSEINT http://pseint.sourceforge.net/ Proceso sistema_de_ecuaciones_lineales     //(c) By JaiMeza aka compSystems mayo 12 2015 www.jaimeza.org     //(c) para ejecutarlo use http://pseint.sourceforge.net/     imprimir "sistema de ecuaciones lineales"     imprimir "en dos variables"          imprimir ""     imprimir "a1*x + b1*y + c1 = 0"     imprimir "a2*x + b2*y + c2 = 0"     imprimir ""     imprimir "/!\ a1*b1 <> 0, a2*b2 <> 0,"          definir a1, b1, c1, a2, b2, c2, d, x, y_ como reales     definir multiplo_ como logico     multiplo_ = falso          imprimir ""     imprimir "entre a1:"     repetir         leer a1     hasta que a1 <> 0          imprimir "entre b1:"     repetir         leer b1     hasta que b1 <> 0          imprimir "entre c1:"     leer c1          imprimir ""     imprimir "entre a2:"     repetir         leer a2     hasta que a2 <> 0          imprimir "entre b2:"     repetir         leer b2     hasta que b2 <> 0          imprimir "entre c2:"     leer c2          //    imprimir a1     //    imprimir b1     //    imprimir a2     //    imprimir b2     d = (a1*b2) - (a2*b1)     //imprimir d          imprimir ""     Si d=0 Entonces                  multiplo_ = ((a1 es multiplo de a2) o (a2 es multiplo de a1)) y ((b1 es multiplo de b2) o (b2 es multiplo de b1) ) y ((c1 es multiplo de c2) o  (c2 es multiplo de c1))         Si multiplo_ = verdadero Entonces             imprimir "Sistema Compatible Indeterminado"             imprimir "existen infinitas soluciones o intersecciones"             imprimir "las dos rectas son paralelas y estan juntas"         Sino             imprimir "Sistema Incompatible"             imprimir "no hay solucion o puntos comunes"             imprimir "las dos rectas son paralelas y separadas"         Fin Si              Sino         x = (b2*c1 - b1*c2)/d         y_ = (a1*c2 - a2*c1)/d                  imprimir "Sistema Compatible Determinado "         imprimir "existe solucion unica, las dos rectas se cortan en un solo punto"         imprimir ""         imprimir "x=",x         imprimir "y=",y_         imprimir ""         imprimir "la coordenada de interseccion es (", x, ", ", y_, ")"     Fin Si      FinProceso // ejemplos // 1: // 9*x-1 + -6*y = 3 // 4*x-1 + 6*y = 36 // a1 = 9, b1=-6, c1=3 // a2 = 4, b2=6, c2=36 // x = 3, y=4 // 2: // 2*x-1 = 4*y // 5+y = 10*x // a1 = 2, b1=-4, c1=1 // a2 = 10, b2=-1, c2=5 // x = 0.5, y=0 // 3: // 2.5*x + 4.6*y = 5 // 1*x - 2.9*y = 7 // a1 = 2.5, b1=4.6, c1=5 // a2 = 1, b2=-2.9, c2=7 // x=3.94092827 y=-1.0548523207 // 4: // 1.2*x + 2.2*y = 1 // 6*x+11*y = 5 // a1 = 1.2, b1=2.2, c1=1 // a2 = 6, b2=11, c2=5 // no hay solución```
Thank you for your useful program.
I recommend you to post on the HP Prime software directory, in this web.
Thanks Akmon I will.
Hey Spybot,
thanks for your great work, I much appreciated it !
Could you add the condition of collinearity of three points ?
And what about conic sections (circumference, parabola, ellipse) ?
Are you going to implement those in the future ?
Best,

Aries
Dante, can you also put here the code of the program (or a zip)? :-)

thank you again!

Salvo
LOL.

Thank you Salvomic something happened while I was uploading the file, it is available now.
(05-16-2015 04:13 PM)Spybot Wrote: [ -> ]LOL.

Thank you Salvomic something happened while I was uploading the file, it is available now.

:-)
thank you,