04-24-2024, 03:10 PM
The goal is to make the Euler-Mascheroni Constant available on the HP-15C and the HP-42S, rounded to 10 and 12 digits, using the least number of steps and the least byte-count, respectively. On the latter a truncated result should be nice as well. This is not being presented as a challenge, but rather as a request for sharing better solutions I am not aware of. Thanks in advance!
HP-15C:
HP-42S:
Listings by JRPN and Free42 simulators, respectively.
HP-15C:
Code:
001 { 42 21 12 } f LBL A
002 { 1 } 1
003 { 0 } 0
004 { 4 } 4
005 { 8 } 8
006 { 1 } 1
007 { 15 } 1/x
008 { 48 } .
009 { 4 } 4
010 { 40 } +
011 { 2 } 2
012 { 43 12 } g ln
013 { 10 } /
014 { 43 32 } g RTN
Code:
001 { 42 21 11 } f LBL A
002 { 5 } 5
003 { 7 } 7
004 { 7 } 7
005 { 2 } 2
006 { 1 } 1
007 { 5 } 5
008 { 6 } 6
009 { 6 } 6
010 { 4 } 4
011 { 9 } 9
012 { 44 36 } STO 36
013 { 45 36 } RCL 36
014 { 43 32 } g RTN
HP-42S:
Code:
00 { 21-Byte Prgm }
01▸LBL "g"
02 PI
03 SQRT
04 3.2581173
05 E↑X-1
06 1/X
07 -
08 1/X
09 END
Code:
00 { 19-Byte Prgm }
01▸LBL "g"
02 1.7324547146
03 1/X
04 END
Listings by JRPN and Free42 simulators, respectively.